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Abstract: 

This research aims at determining the presence of Multicollinearity in a function using farrar-glaubar test approach. 
In most economic data, there is the presence of Multicollinearity but the severity varies. The degree of this 
multicollinearity may vary from function to function. However, Farrar-Glaubar test is used to detect the presence 
and severity of Multicollinearity, location of Multicollinearity, and the pattern of Multicollinearity in a function. 
How to correct the effect of Multicollinearity was also covered this research. After analyses were done on the 
collected data, we realized that, Multicollinearity is most pronounced in Economic data. 
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Introduction 
Data is simply scientific term for facts, figures, information and measurements. Data, therefore, include the 
number of people who gain admission into universities each year, number of yam produced by each farmer 
in a year, etc. In other words, data can come from sector such as Agriculture, Business, Industrial etc. 
Economic data, on the other hand, are the data obtained from business transactions which can be in form of 
buying and selling of goods and services. 
Econometrics is the application of mathematics and statistical method to the analysis of economic data as 
mathematical models help us to structure our perception about the forces generating the data we want to 
analyze, while statistical method helps to summarize the data, estimate the parameters of our models and 
interpret the strength of the evidence for various hypothesis that we wish to examine. The provided data 
affect our idea about the appropriateness of the original model and may result in significant revisions of such 
models. 
There is, thus, a continuous interplay in economics between mathematical theoretical modelling of economic 
behavior, data collection, data summarizing, model fitting and model evaluation. Theory suggests data to be 
sought and examined; data availability suggests new theoretical questions and stimulates the development 
of new statistical method. The examination of data in the light of theory lend often to new interpretations and 
sometimes to question about its quality or relevance and to attempt to collect new and different data. 
Collinearity refers to the existence of a single linear relationship. In other words, multicollinearity is simply 
the existence of multiple or several relationships in a linear relationship. Multicollinearity is not a condition 
that either exists or does not exist in economic function, but rather a phenomenon inherent in most 
relationship due to the nature of economic magnitudes. There is conclusive evidence concerning the degree 
of collinearity which, if present, will affect seriously the parameter estimate intuitively, when any two 
explanatory variables are changing in nearly the same way, it becomes extremely difficult to establish the 
influence of each one regressor on y separately (Armstong, 2012). 
 
 Aim 
This research aims at determining the presence of multicollinearity in a function using farrar- glauber test 
approach and the specific objectives are: 
i. Test for the location of Multicollinearity. 
ii. Test for the pattern of Multicollinearity. 
 
 GENERAL LITERATURE 
 Correlation and Regression Analysis 
There are various techniques of measuring the existence correlation between two variables. The most used 
techniques are correlation and regression analysis. 
Correlation is the degree of relationships existing between two or more variables; the degree of relationship 
between two variables is called simple correlation. The primary objective investigating the correlation 
between two variables is to determine whether there is any causal connection between them (Becker, 1998). 
  
Correlation Coefficient 
The parameter 𝜌𝑖 is called the population correlation coefficient and it measures the strength of the linear 
relationship between 𝑥 and 𝑦. The statistic 𝑟 measures the strength of relationship between the sample 
observations of two variables, it is also called sample estimate (Waegeman, 2009). 
The sample correlation coefficient is defined by the formula: 
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Where Y is the dependent variable and X is the independent variable. 
The value of r is always between -1 and +1 no matter the unit of X and Y. A value of r near or equal to zero 
implies little or no linear relationship. The closer r is to 1 or -1. The stronger the linear relationship between Y 
and X. 
Test of significance for the sample coefficient 

 
With n-2 degree of freedom and this is compared with the appropriate theoretical value of t base on a level of 
significance. 
 
Simple Regression Analysis 

Least Square Method 
If two variables X and Y are linearly related, their relationship can be expressed by the following simple 
linear. 𝑌 = 𝛼 + 𝛽𝑥 + 𝑒𝑖 
Where α and 𝛽 are parameters called the regression constant and the regression coefficient respectively ei is a 
random variable with mean of zero and variance S2 (Tofellis, 2009). 
 
Multiple Regression Estimation 

Multiple regression analysis is a process whereby a relationship is established between two or more variables 
in term of an equation so that, given the value of one variable, the value of the other variable can be 
predicted (Oloyede 2012). 
It is an attempt to determine approximately the value of the population parameters in the model of Awel 
(2014). Multiple regressions are concerned with obtaining a mathematical equation which describes the 
relationship among three or more variables. Then, the equation obtained can be used for comparism or 
purpose of estimation. Dependent variable is a variable that occur as a result of consequence of other variable 
called Independent variable. 
The multicollinearity effect is observed in a function when all or some of the explanatory variable high 
correlated with each other than they are related to the dependent variable. 
 
Multicollinearity 

Cressie, (1996) viewed that; a crucial condition for the application of least squares is that the explanatory 
variables are not perfectly linearly correlated(𝑟𝑥𝑖𝑟𝑥𝑗 ≠ 1). The term multicollinearity is used to denote the 
presence of linear relationship (or near linear 
relationship) among explanatory variables. If the explanatory variables are perfectly linearly corrected, that is 
if the correlation coefficient for these variables is equal to unity, the parameters become indeterminate; it is 
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impossible to obtain numerical values for each parameter separately and the method of least square breaks 
down. At the other extreme, if the explanatory variables are not inter-correlated at all (that is if the 
correlation coefficient for these variables is not equal to zero), the variables are called orthogonal (variables 
whose covariance is zero: ∑ 𝑥𝑖𝑥𝑗⁄𝑛 = 0)and there are no problems concerning the estimates of the coefficients, 
at least so far as multicollinearity is concerned. Actually, in the case of orthogonal x’s, there is no need to 
perform a multiple regression analysis. Each parameter can be estimated by a simple regression of y on the 
corresponding regressor: Y=f(x). 
In practice, neither of the above extreme cases (of orthogonal X’s or perfect collinear x's) is often met. In most 
cases, there is some degree of inter-correlation among the explanatory variables, due to the interdependence 
of many economic magnitudes over time. In this event, the simple correlation coefficient for each pair of 
explanatory variables will have a value between zero and unit, the multicollinearity problems may impair 
the accuracy and stability of the parameters estimates but the exact effects of colinearity have not yet been 
theoretically established. 
Multicollinearity is not a condition that either exists or does not exist in economic function, but rather a 
phenomenon inherent in most relationship due to the nature of economic magnitudes. There is no conclusive 
evidence concerning the degree of co linearity which, if present, will affect seriously the parameter estimate. 
Intuitively, when any two explanatory variables are changing in nearly the same way, it becomes extremely 
difficult to establish the influence of each one regressor on y separately. For example, assume that the 
consumption expenditure of an individual depends on his income and liquid assets. If over a period of time, 
income and the liquid assets change by the same proportion, the influence on consumption of one of these 
variables may be erroneously attributed to the other. The effects of these variables on consumption cannot be 
sensibly investigated, due to their high inter-correlation (Aldrich, 2005). 
 
The Nature of Multicollinearity 

The term multicollinearity is due to Ragnar (2013) originally, it means the existence of a “perfect”, or exact, 
linear relationship among some or all the explanatory variables of a regression model. Strictly speaking, 
multicollinearity refers to the existence of more than one exact linear relationship, and co linearity refers to 
the existence of a single linear relationship involving explanatory variable 𝑋1, 𝑋2 𝑋𝑘(where X1=1 for all 
observations to allow for 
the intercept term), an exact linear relationship is said to exist if the following condition is 
satisfied: 
 
λ1𝑋1 + λ2𝑋2 + +λ𝑘𝑋𝑘 = 0 
Where λ1λ2… λk are constants such that not all of them are zero simultaneously. 
Today, however, the term multicollinearity is used in a broader sense to include the case of perfect 
multicollinearity. As it is, in the case where the X variables are inter- correlated but not perfectly so, as 
follows: 
λ1𝑋1 + λ2𝑋2 + +λ𝑘𝑋𝑘 = 0 
Where Vi is a stochastic error term. 
The preceding algebraic approach to multicollinearity can be portrayed succinctly by the Ballentine (David, 
2005). Three variables say Y1 X2 and X3, represent the variations in Y (the dependent variable) and X2 and 
X3 (the explanatory variables). The degree of colinearity can be measured by the extent of the overlap 
(shaded area) of the X2 and X3 circles. In the diagram below − (a), there is no overlap between X2 and X3, 
and hence no colinearity. In (b) through (c), there is a "low' to "high" degree of colinearity - the greater the 
overlap between X2 and X3 (i.e. the larger the shaded area), the higher the degree of colinearity. In the 
extreme, if X2 and X3 were to overlap completely (or if X2 were completely inside X3, or vice versa), 
colinearity would be perfect. 
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Plausibility of the Assumption 

Strictly speaking, the assumption concerning multicollinearity unit is that the variables are not perfectly 
linearly correlated and it is easily met in practice, because it is very rare for any two variables to exactly inter-
correlated in a linear form. However, the estimates of least squares may be seriously affected with a less than 
perfect intercorrelation between the explanatory variable (Fotheringham, 2002). 
 
Reasons for Multicollinearity 

Firstly, there is a tendency of economic variable to move together over time. Economic magnitudes are 
influenced by the same factors and in consequence, once these determining factors become operative, the 
economic variables show the same broad pattern or behavior over time. For example, in periods of booms 
rapid economic growth, the basic economic magnitudes grow, although some tend to lag behind others. Thus 
income, consumption, savings, investment, prices, employment, tends to rise in periods of economic 
expansion and decrease in periods of recession. Growth and tend factors in some series are the most serious 
cause of multicollinearity. 
Secondly, the use of lagged values of some explanatory variables as separate independent factors in the 
relationship. Models with distributed lags have given satisfactory results in many fields of applied 
econometrics, and their use is expanding fast. For example, in consumption function. It has become 
customary to include among the explanatory variables past as well as the present levels of income. Similarly, 
in investment function, distributed lags concerning past levels of economic activity are introduced as 
separate explanatory variables. Naturally, the successive values of certain variable are inter-correlated, for 
example, income in the current period is partly determined by its own value in the previous period, and so 
on. Thus, multicollinearity is almost certain to exist in distributed lag models. 
Taking the above considerations into account, it is clear that some degree of co linearity is expected to appear 
in most economic relationships. It should be noted that although multicollinearity is usually connected with 
time series, it is quite frequent in cross section data as well. For example, in across section, sample of 
manufacturing firms, labour and capital inputs are almost always highly inter-correlated because large firms 
tend to have large quantities of both factors, while small firms usually have smaller quantities of both labour 
and capital. However, multicollinearity tends to be more common and more serious a problem in time series. 
 
Effects of Multicollinearity 

1. The estimates of the coefficient are indeterminate 

2. The standard errors of these estimates become infinitely i.e. the matrix (X1X) become 
singular. 

3. The estimate regression coefficients individual statistically significant even though a 
definite statistical relation exists between the dependent variable and the set of 
independent variables. 

 

Consequences of Multicollinearity 

In the presence of multicollinearity, the estimate of one variable's impact on y while controlling for the other 
tends to be less precise than if predictors were uncorrelated with one another. The usual interpretation of a 
regression coefficient is that it provides an estimate of the effect of a one unit change in an independent 
variable, X1, holding the other variables constant. If X1 is highly correlated with another independent 
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variable, X2 in the given data set, then we only have observations for which X1 and X2 have particular 
relationship (either positive or negative). We don't have observations for which X1 changes Independently of 
X2, so we have an imprecise estimates of the effect of Independent changes in X1. 
Kutner (2004) affirms that, in some sense, the collinear variables contain the same information about the 
dependent variable. If nominally "different” measures actually quantify the same phenomenon, then they are 
redundant. Alternatively, if the variables are accorded different names and perhaps employ different 
numeric measurement scales but are highly correlated with each other then they suffer from redundancy. 
One of the features of multicollinearity is that the standard errors of the affected coefficients tend to be large. 
In that case, the test of the hypothesis that the coefficient is equal to zero against the alternative that it is not 
equal to zero leads to a failure to reject the null hypothesis. However, if a simple linear regression of the 
dependent variable on this explanatory variable is estimated, the coefficient will be found to be significant; 
specifically, the analysis will reject the hypothesis that the coefficient is insignificant. In the presence of 
multicollinearity, an analyst might falsely conclude that there is no linear relationship between an 
independent and dependent variable. A principal danger of such data redundancy is over fitting in 
regressions analysis models. The best regression models are those in which the predictor analysis models 
correlate highly with the dependent (outcome) variables but correlate at most only minimally with each 
other. Such a mode is often called "low noise" and 
will be statistically robust (that is it will predict reliably across numerous samples of variables sets drawn 
from the same statistical population). 
 
Solutions for the Incidence of Multicollinearity 

The solutions which may be adopted if multicollinearity exists in a function vary, depending of the severity 
of multicollinarity, on availability of other sources of data (larger samples, cross-section samples etc.), on the 
importance of factors which are multicollinearity on the purpose for which the function is being estimated 
and other considerations. 

1. Some writers have suggested that, if multicollinearity does not seriously affect the estimates 
of the coefficients, one may tolerate its presence in the function, although the integrity of the 
least estimates is to a certain extent impaired. 

2. Others have suggested that if multicollinearity affects some unimportant factors, one may 
exclude these factors from the function. Again specification error may well be expected to 
undermine the BLU character of the ordinary least squares. 

3. Multicollinearity may affect only a part of the b's, while other estimates may remain fairly 
stable and reliable. In this case: 

a. The reliable b's may be used for any purpose for any purpose, fore case or policy formulation 
(which require reliable information about structural coefficients); 

b. All the estimates may be used to exist in the forecast period. 

 

Corrective Solutions 

1. Increase of the Size of the Sample: It has been suggested that multicollinearity may be avoided 
or reduced if we increased the size of the sample by gathering more observations. Thus Christ 
says that by increasing the sample. High covariance among estimated parameters resulting 
from multicollinearity in an equation can be reduced, because this covariance’s inversely 
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proportional to sample size. This is true only if multicollinearity is due to errors of 
measurements, as well as when intercorrelation happens to exist only in our original sample 
but not in the population of the X's. If the populations of the variables are multi-collinear, 
obviously an increase in the size of the sample will not help in the reduction of multi-collinear 
relations among the variables. 

2. Substitution of Lagged variables for other Explanatory variables in Distribution Lag models. 

3. Introduction of Additional Equations in the Models Application of the Principal Components 
Method. 

 
METHODOLOGY 

Research methodology is carried out in any sector of the economy in order to discover the facts that 
economic data are highly affected by the presence of multicollinearity. In summary, it is a process of finding 
answer to problem and deals with multicollinearity in economic data. 
 
The Farrar-Glaubar Test for Multicollinearity 

A statistical test for multicollinearity has been recently developed by Farrar and Glauber. It is really a set of 
three tests, that is, the authors use three statistics for testing for multicollinearity. The first test is a chi-square 
test for the detection of the existence and the severity of multicollinearity in a function including several 
explanatory variables. The second test is F-tests for locating which variables are multi-collinear. The third test 
is a t-Test for finding out the pattern of multicollinearity, which is for determining which variables are 
responsible for the appearance of multi-collinear variables. 
Farrar Glaubar considers multicollinearity in a sample departure of the observed X's from orthogonality. 
Their approach emerged from the general ideals developed in the preceding paragraphs namely that if 
multicollinearity is perfect, then the coefficients becomes indeterminate, and that the inter-correlations 
among the various explanatory variables can be measured by multiple correlation coefficients and partial 
correlation coefficients. The Farrar Glauber test may be outlined as follows: 
 
Steps in Carrying Out the Farrar-Glaubar Test 

i. Conduct the Chi - Square test to detect the existence of severity of multicollinearity. 

ii. Carry out F-test to locate the variables(s) inter-correlated, if Chi-Square test is positive. 

iii. responsiblearethatvariables(s)detect theT-test toConduct
 for multicollinearity if the F-test is positive. 

The Chi - Square Test 

The following steps are taken in conducting the Chi-Square test. 
1. The ideal behind multicollinearity may be considered as a departure from orthogonality. The 

stronger the departure from orthogonality, that is the closer the value of the determined to 
zero, the stronger the degree of multicollinearity, and vice-versa, starting from this fact, 
Farrar-Glauber suggested the following X2 test for detecting the strength of multicollinearity 
over the whole set of explanatory variables. The basic hypothesis here is: 

Ho:     The X's are orthogonal 
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It tested against the alternative hypothesis H1: The X's are not orthogonal 
2. Compute the matrix (r,) of the Simple correlated coefficients between x1. For instance, if the 

explanatory variables are three, then xi becomes x1, x2 and x3. 

3.  

 

4. Calculate D = |rij| the determinant of the matrix (rij) 

5. Calculate the Statistics (Farrar and Glauber have found that the quantity) χ2= - [T - 1 - 1/6(2k + 5)] 

Loge (value of the std. determinant) 

(Where χ 2=observed (compound from the sample). T size of the sample, and K = number of 

explanatory variable) has a χ2 distributed with V = ½k (k-1) degrees of freedom. 

5.       Check χα2 with 1/2k (k-1) degrees of freedom (α is the level of significance). 

It should be clear that the theoretical value of χ 2, is the value that defines the critical region of the test at the chosen level 

of significance and with the appropriate degrees of freedoms. 

If the observed χ 2 is greater than the theoretical value of χ2 with ½k (k-1) degrees of freedom, we reject the assumption 

of orthogonality, that is, we accept that there is multicollinearity in the function. The higher the observed χ 2, the more 

severe is the multicollinearity. 

If the observed χ 2 < χ2 , we accept the assumption of orthogonal, that is we accept that there is no significant 

multicollinearity in the function. 

3.2.2. An F-Test for the Location of Multicollinearity 

If the chi-square test is positive, the multicollinearity exists. 

The next step is to locate the factors which are multi-collinear. Farrar Glaubar computes the multiple correlation 

coefficients among the explanatory variables (Rx12….x2….x3 xn1, 

Rx 2…. x 2…x ……..x ) and they test the statistical significance of these multiple correlation coefficients with an F-test. 

 

 

Steps: 

i. Write the xi which is suspected to be inter-correlated with other Xs’ as a function of other Xs’. Thus, 

xi=f(x1, x2, x3 …xk). This can also be rewritten as (Given x2x3 as inter-correlated variable then), 

Xi=f(x2x3)=> B2X2+B3X3+U 

ii. Compute the parameter 

𝑏 = (𝑏2)As b = (x1x)-1X1X, where X = (x2x3) 
𝑏3 
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1.2.3.       A T-Test for the Pattern of Multicollinearity 

This is a T-test which aims at the detection of the variables which cause multicollinearity. 

To find variables which are responsible for the multicollinearity, we compute the partial correlation coefficients among 

the explanatory variables and test their statistical significance with the t-statistic. 

Recall that the partial correlation coefficient between any two variable xi and xj, shows the degree of correlation 

between these two variables, all others being kept constant. For the two – variable model, the partial correlation 

coefficients are given by the formulae. 

 

The observed value t* is compared with the theoretical t value with v = (T-K) degrees 

of freedom at the chosen level of significance). If t* > t, we accept that the partial correlation coefficient between the 

variable Xi and Xj is significant, that is, the variables Xi and Xj are responsible for multicollinearity in the function. If t* 

< t we accept that Xi and Xj are not the cause of multicollinearity, since their partial correlation coefficient is not 

statistically significant. With the above three statistics, we find the severity, the location and the pattern of 

multicollinearity. 
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ANALYSIS AND PRESENTATION OF DATA 

Presentation of Data Y = Consumption, X1= Wage income 

X2= Non-wage, non-farm income, and 

 X3 = Farm income 

  

S/N Y X1 X2 X3 

3.961 62.8 43.41 17.10

5.482 65.0 46.44 18.65

4.373 63.9 44.35 17.09

4.514 67.5 47.82 19.28

4.885 71.3 51.02 23.24

6.376 76.6 58.71 28.11

8.967 86.3 87.69 30.29

9.768 95.7 76.73 28.26

9.319 98.3 75.91 27.91

9.8510 100.3 77.62 32.30

7.2111 103.2 78.01 31.39

7.3912 108.9 83.57 35.61

7.9813 108.5 90.95 37.58

7.4214 11.4 95.47 35.17
 

Source: CIA World fact book, 2011. 

ANALYSIS:  

∑ Y = 1219.7, ∑ X1 = 957.34, ∑ 𝑋2 = 381.98, ∑ 𝑋3 = 97.45, 

∑ 𝑋1𝑌 = 877.152, ∑ 𝑋2 𝑌 = 31929.9640, ∑ 𝑋3 𝑌 = 8876.111 

∑ 𝑋1𝑋2 = 27761.387, ∑ 𝑋1𝑋3 = 7076.0291, ∑ 𝑋2𝑋3 = 2799.5687 

∑ 𝑌2 = 110780.37, ∑ 𝑋12 = 55701.43, ∑ 𝑋22 = 215255.3, ∑ 𝑋32 = 734.111 

T = 14 

Hypothesis Statement: 

The X’s are orthogonalHo:

The X’s are not orthogonalAnd it tested against the alternative hypothesis H1:

 

In the same manner,  

X1X2 = 1641.0406, X1X3 = 412.2589, X22 = 653.1965, 

X2X3 = 140.715, 

X2Y = 2144.89, 

X32 = 55.7895, 

X3Y = 386.1278 

X1Y = 4310.3716, 
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Decision Rule: 

Since reject Ho if χ2cal>χ2tab, otherwise accept Ho 

Conclusion 

Since reject Ho if χ2cal>χ2tab, we therefore reject Ho and conclude that there is the presence of Multicollinearity in the 

function. 

Test 2: An F Test for the Location of Multicollinearity 

HO: xi is not inter-correlated with x2 and x3 Hi: xi is inter-correlated with x2 and x3. 

Hi: xi is inter-correlated with x2 and x3. 

Write X11 = F(x2, x3) 

= x1 => B2x2 + B3x3 + u 
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Decision Rule: 

If Ftab<Fcal, accept H1 otherwise reject H1. 

Conclusion 

Since Ftab<Fcal,i.e 3.98 < 79.2456, we thereby accept the alternative hypothesis and conclude that X1 is inter-correlated 

with X2 and X3. 

In the same manner, F2 = Fcal = 15.3375 F3 = Fcal = 21.9863 

Testing each Fcal against Ftable i.e comparing F calculation with F tabulated, we realized that each of the Fcal is greater 

than Ftab, we therefore conclude that X2 is inter- correlated with X1 and X3 in the case. And X3 is inter-correlated with 

X1 and X2 in the last case. 

Test3: A T-Test for the Pattern of Mulitcollinearity Hypothesis Statement 
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Correcting the Effect of Multicollinearity 

As we rightly know, the effect of multicollinearity can be corrected through several ways. In this case, we shall adopt 

the method which says that this can be minimized or corrected by increasing the sample size. 

We, therefore, increase the sample size by eleven (11) and test for the presence of multicollinearity. 

The following results were obtained from the analysis. 

S/N Y X1 X2 X3 Y2 X1
2 X2

2 X3
2

 

292.41 15.68161884.4283943.843.9617.143.4162.81  

347.8225 30.03042156.67442255.4818.6546.44652  

292.0681 19.09691966.9234083.214.3717.0944.3563.93  

371.7184 20.34012286.7524556.254.5119.2847.8267.54  

540.0976 23.81442603.045083.694.8823.2451.0271.35  

790.1721 4057693446.8645867.566.3728.1158.7176.66

917.4841 80.28167689.5367447.698.9630.2987.6986.37  

798.6276 95.25765887.4939158.499.7628.2676.7395.78  

778.9681 86.67615762.3289662.899.3127.9175.9198.39  

1043.29 97.02256024.86410060.099.8532.377.62100.310  

985.3321 51.98416085.5610650.247.2131.3978.01103.211  

1268.072 54.61216983.94511859.217.3935.6183.57108.912  

1412.256 63.68048206.54811772.257.9837.5890.59108.513  

1236.929 55.05649114.521129.967.4235.1795.4711.414  

347.0769 54.31692156.6742286.7527.3718.6346.4447.8215  

289.3401 75.16891966.9232603.048.6717.0144.3551.0216  

371.7184 95.84412286.7523446.8649.7919.2847.8258.7117  

539.1684 86.67612603.047689.5369.3123.2251.0287.6918  

790.1721 97.02253446.8645887.4939.8528.1158.7176.7319  

917.4841 51.98417689.5365762.3287.2130.2987.6975.9120  

820.2496 54.61215887.4936024.8647.3928.6476.7377.6221  

778.9681 63.68045762.3286085.567.9827.9175.9178.0122  

1043.29 55.05646024.8646983.9457.4232.377.6283.5723  

985.3321 92.166085.568206.5489.631.3978.0190.5924  

1268.072 110.254083.211412.25610.535.6163.937.5825  
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192.5674.371665.541884.95
4 

1570.88319226.12118092.7154889.6  

Source: CIA World fact book, 2011. 

Hypothesis Statement: 
The X’s are orthogonalHo:

The X’s are not orthogonalAnd it tested against the alternative hypothesis H1:
In the same manner, 
χ2cal = -[T – 1 – 1 1/6(2k + 5)] Loge 
= 6.3089 
χ20.05V, where v = ½ k(k – 1) 
v = ½ x 3(3 – 1) v = x 3(2) 
v = 3 
χ20.05 3 = 7.82 
Decision Rule: 
Since reject Ho if χ2cal>χ2tab, otherwise accept Ho 
Conclusion 
Since χ2cal<χ2tab, we therefore fail to reject Ho and conclude that there is absent of multicollinearity in 
the function. 
 
CONCLUSION AND RECOMMENDATIONS 

Conclusion 

It is obvious from the analysis that the presence and severity of multicollinearity, as well as the pattern and 
location of multicollinearity, in a function can be easy detected by Ferrar- Glauber. In this analysis, we 
realized that variable X2 is responsible for the multicollinearity in the function. 
 
Recommendations 
From this analysis and other analysis, it is obvious that multicollinearity is always present in Economic data 
but the severity differs. The following recommendations can be made from this analysis and from other 
submissions on multicollinearity. 

1. If the multicollinearity does not seriously affect the estimates of the coefficients, one may tolerate its 
presence in the function. Although the integrity of the least estimates is to a certain extent impaired. 

2. The use of Lagged variables for other explanatory variables in Distribution Lag Models can reduce the 
presence of colinearity. 

3. Introduction of Additional Equations in the Models. 
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