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Abstract:

This research aims at determining the presence of Multicollinearity in a function using farrar-glaubar test approach.
In most economic data, there is the presence of Multicollinearity but the severity varies. The degree of this
multicollinearity may vary from function to function. However, Farrar-Glaubar test is used to detect the presence
and severity of Multicollinearity, location of Multicollinearity, and the pattern of Multicollinearity in a function.
How to correct the effect of Multicollinearity was also covered this research. After analyses were done on the

collected data, we realized that, Multicollinearity is most pronounced in Economic data.
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INTRODUCTION

Data is simply scientific term for facts, figures, information and measurements. Data, therefore, include the
number of people who gain admission into universities each year, number of yam produced by each farmer
in a year, etc. In other words, data can come from sector such as Agriculture, Business, Industrial etc.
Economic data, on the other hand, are the data obtained from business transactions which can be in form of
buying and selling of goods and services.

Econometrics is the application of mathematics and statistical method to the analysis of economic data as
mathematical models help us to structure our perception about the forces generating the data we want to
analyze, while statistical method helps to summarize the data, estimate the parameters of our models and
interpret the strength of the evidence for various hypothesis that we wish to examine. The provided data
affect our idea about the appropriateness of the original model and may result in significant revisions of such
models.

There is, thus, a continuous interplay in economics between mathematical theoretical modelling of economic
behavior, data collection, data summarizing, model fitting and model evaluation. Theory suggests data to be
sought and examined; data availability suggests new theoretical questions and stimulates the development
of new statistical method. The examination of data in the light of theory lend often to new interpretations and
sometimes to question about its quality or relevance and to attempt to collect new and different data.
Collinearity refers to the existence of a single linear relationship. In other words, multicollinearity is simply
the existence of multiple or several relationships in a linear relationship. Multicollinearity is not a condition
that either exists or does not exist in economic function, but rather a phenomenon inherent in most
relationship due to the nature of economic magnitudes. There is conclusive evidence concerning the degree
of collinearity which, if present, will affect seriously the parameter estimate intuitively, when any two
explanatory variables are changing in nearly the same way, it becomes extremely difficult to establish the

influence of each one regressor on y separately (Armstong, 2012).

Aim
This research aims at determining the presence of multicollinearity in a function using farrar- glauber test

approach and the specific objectives are:

i Test for the location of Multicollinearity.
ii. Test for the pattern of Multicollinearity.
GENERAL LITERATURE

Correlation and Regression Analysis
There are various techniques of measuring the existence correlation between two variables. The most used
techniques are correlation and regression analysis.
Correlation is the degree of relationships existing between two or more variables; the degree of relationship
between two variables is called simple correlation. The primary objective investigating the correlation

between two variables is to determine whether there is any causal connection between them (Becker, 1998).

Correlation Coefficient

The parameter pi is called the population correlation coefficient and it measures the strength of the linear
relationship between x and y. The statistic r measures the strength of relationship between the sample
observations of two variables, it is also called sample estimate (Waegeman, 2009).

The sample correlation coefficient is defined by the formula:
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Where Y is the dependent variable and X is the independent variable.

The value of r is always between -1 and +1 no matter the unit of X and Y. A value of r near or equal to zero
implies little or no linear relationship. The closer r is to 1 or -1. The stronger the linear relationship between Y
and X.

Test of significance for the sample coefficient
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With n-2 degree of freedom and this is compared with the appropriate theoretical value of t base on a level of

significance.

Simple Regression Analysis

Least Square Method

If two variables X and Y are linearly related, their relationship can be expressed by the following simple
linear. Y=a+fx+ei

Where o and [ are parameters called the regression constant and the regression coefficient respectively ei is a

random variable with mean of zero and variance S? (Tofellis, 2009).

Multiple Regression Estimation

Multiple regression analysis is a process whereby a relationship is established between two or more variables
in term of an equation so that, given the value of one variable, the value of the other variable can be
predicted (Oloyede 2012).

It is an attempt to determine approximately the value of the population parameters in the model of Awel
(2014). Multiple regressions are concerned with obtaining a mathematical equation which describes the
relationship among three or more variables. Then, the equation obtained can be used for comparism or
purpose of estimation. Dependent variable is a variable that occur as a result of consequence of other variable
called Independent variable.

The multicollinearity effect is observed in a function when all or some of the explanatory variable high

correlated with each other than they are related to the dependent variable.

Multicollinearity

Cressie, (1996) viewed that; a crucial condition for the application of least squares is that the explanatory
variables are not perfectly linearly correlated(rxirx; # 1). The term multicollinearity is used to denote the
presence of linear relationship (or near linear

relationship) among explanatory variables. If the explanatory variables are perfectly linearly corrected, that is

if the correlation coefficient for these variables is equal to unity, the parameters become indeterminate; it is
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impossible to obtain numerical values for each parameter separately and the method of least square breaks
down. At the other extreme, if the explanatory variables are not inter-correlated at all (that is if the
correlation coefficient for these variables is not equal to zero), the variables are called orthogonal (variables
whose covariance is zero: ). xixyn = 0)and there are no problems concerning the estimates of the coefficients,
at least so far as multicollinearity is concerned. Actually, in the case of orthogonal x’s, there is no need to
perform a multiple regression analysis. Each parameter can be estimated by a simple regression of y on the
corresponding regressor: Y=£(x).

In practice, neither of the above extreme cases (of orthogonal X’s or perfect collinear x's) is often met. In most
cases, there is some degree of inter-correlation among the explanatory variables, due to the interdependence
of many economic magnitudes over time. In this event, the simple correlation coefficient for each pair of
explanatory variables will have a value between zero and unit, the multicollinearity problems may impair
the accuracy and stability of the parameters estimates but the exact effects of colinearity have not yet been
theoretically established.

Multicollinearity is not a condition that either exists or does not exist in economic function, but rather a
phenomenon inherent in most relationship due to the nature of economic magnitudes. There is no conclusive
evidence concerning the degree of co linearity which, if present, will affect seriously the parameter estimate.
Intuitively, when any two explanatory variables are changing in nearly the same way, it becomes extremely
difficult to establish the influence of each one regressor on y separately. For example, assume that the
consumption expenditure of an individual depends on his income and liquid assets. If over a period of time,
income and the liquid assets change by the same proportion, the influence on consumption of one of these
variables may be erroneously attributed to the other. The effects of these variables on consumption cannot be

sensibly investigated, due to their high inter-correlation (Aldrich, 2005).

The Nature of Multicollinearity

The term multicollinearity is due to Ragnar (2013) originally, it means the existence of a “perfect”, or exact,
linear relationship among some or all the explanatory variables of a regression model. Strictly speaking,
multicollinearity refers to the existence of more than one exact linear relationship, and co linearity refers to
the existence of a single linear relationship involving explanatory variable X1, X2 Xi(where Xl1=1 for all
observations to allow for

the intercept term), an exact linear relationship is said to exist if the following condition is

satisfied:

AXi+ X2+ +ARXk=0

Where A1A2... Ak are constants such that not all of them are zero simultaneously.

Today, however, the term multicollinearity is used in a broader sense to include the case of perfect
multicollinearity. As it is, in the case where the X variables are inter- correlated but not perfectly so, as
follows:

AXi+ 22X+ +ARXk=0

Where Vi is a stochastic error term.

The preceding algebraic approach to multicollinearity can be portrayed succinctly by the Ballentine (David,
2005). Three variables say Y1 X2 and X3, represent the variations in Y (the dependent variable) and X2 and
X3 (the explanatory variables). The degree of colinearity can be measured by the extent of the overlap
(shaded area) of the X2 and X3 circles. In the diagram below — (a), there is no overlap between X2 and X3,
and hence no colinearity. In (b) through (c), there is a "low' to "high" degree of colinearity - the greater the
overlap between X2 and X3 (i.e. the larger the shaded area), the higher the degree of colinearity. In the
extreme, if X2 and X3 were to overlap completely (or if X2 were completely inside X3, or vice versa),

colinearity would be perfect.
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Plausibility of the Assumption

Strictly speaking, the assumption concerning multicollinearity unit is that the variables are not perfectly
linearly correlated and it is easily met in practice, because it is very rare for any two variables to exactly inter-
correlated in a linear form. However, the estimates of least squares may be seriously affected with a less than

perfect intercorrelation between the explanatory variable (Fotheringham, 2002).

Reasons for Multicollinearity

Firstly, there is a tendency of economic variable to move together over time. Economic magnitudes are
influenced by the same factors and in consequence, once these determining factors become operative, the
economic variables show the same broad pattern or behavior over time. For example, in periods of booms
rapid economic growth, the basic economic magnitudes grow, although some tend to lag behind others. Thus
income, consumption, savings, investment, prices, employment, tends to rise in periods of economic
expansion and decrease in periods of recession. Growth and tend factors in some series are the most serious
cause of multicollinearity.

Secondly, the use of lagged values of some explanatory variables as separate independent factors in the
relationship. Models with distributed lags have given satisfactory results in many fields of applied
econometrics, and their use is expanding fast. For example, in consumption function. It has become
customary to include among the explanatory variables past as well as the present levels of income. Similarly,
in investment function, distributed lags concerning past levels of economic activity are introduced as
separate explanatory variables. Naturally, the successive values of certain variable are inter-correlated, for
example, income in the current period is partly determined by its own value in the previous period, and so
on. Thus, multicollinearity is almost certain to exist in distributed lag models.

Taking the above considerations into account, it is clear that some degree of co linearity is expected to appear
in most economic relationships. It should be noted that although multicollinearity is usually connected with
time series, it is quite frequent in cross section data as well. For example, in across section, sample of
manufacturing firms, labour and capital inputs are almost always highly inter-correlated because large firms
tend to have large quantities of both factors, while small firms usually have smaller quantities of both labour

and capital. However, multicollinearity tends to be more common and more serious a problem in time series.

Effects of Multicollinearity
1. The estimates of the coefficient are indeterminate

2. The standard errors of these estimates become infinitely i.e. the matrix (XX) become

singular.

3. The estimate regression coefficients individual statistically significant even though a
definite statistical relation exists between the dependent variable and the set of

independent variables.

Consequences of Multicollinearity

In the presence of multicollinearity, the estimate of one variable's impact on y while controlling for the other
tends to be less precise than if predictors were uncorrelated with one another. The usual interpretation of a
regression coefficient is that it provides an estimate of the effect of a one unit change in an independent

variable, X1, holding the other variables constant. If X1 is highly correlated with another independent
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variable, X2 in the given data set, then we only have observations for which X1 and X2 have particular
relationship (either positive or negative). We don't have observations for which X1 changes Independently of
X2, so we have an imprecise estimates of the effect of Independent changes in X1.

Kutner (2004) affirms that, in some sense, the collinear variables contain the same information about the
dependent variable. If nominally "different” measures actually quantify the same phenomenon, then they are
redundant. Alternatively, if the variables are accorded different names and perhaps employ different
numeric measurement scales but are highly correlated with each other then they suffer from redundancy.
One of the features of multicollinearity is that the standard errors of the affected coefficients tend to be large.
In that case, the test of the hypothesis that the coefficient is equal to zero against the alternative that it is not
equal to zero leads to a failure to reject the null hypothesis. However, if a simple linear regression of the
dependent variable on this explanatory variable is estimated, the coefficient will be found to be significant;
specifically, the analysis will reject the hypothesis that the coefficient is insignificant. In the presence of
multicollinearity, an analyst might falsely conclude that there is no linear relationship between an
independent and dependent variable. A principal danger of such data redundancy is over fitting in
regressions analysis models. The best regression models are those in which the predictor analysis models
correlate highly with the dependent (outcome) variables but correlate at most only minimally with each
other. Such a mode is often called "low noise" and

will be statistically robust (that is it will predict reliably across numerous samples of variables sets drawn

from the same statistical population).

Solutions for the Incidence of Multicollinearity

The solutions which may be adopted if multicollinearity exists in a function vary, depending of the severity

of multicollinarity, on availability of other sources of data (larger samples, cross-section samples etc.), on the

importance of factors which are multicollinearity on the purpose for which the function is being estimated
and other considerations.

1. Some writers have suggested that, if multicollinearity does not seriously affect the estimates

of the coefficients, one may tolerate its presence in the function, although the integrity of the

least estimates is to a certain extent impaired.

2. Others have suggested that if multicollinearity affects some unimportant factors, one may
exclude these factors from the function. Again specification error may well be expected to

undermine the BLU character of the ordinary least squares.

3. Multicollinearity may affect only a part of the b's, while other estimates may remain fairly

stable and reliable. In this case:

a. The reliable b's may be used for any purpose for any purpose, fore case or policy formulation

(which require reliable information about structural coefficients);

b. All the estimates may be used to exist in the forecast period.

Corrective Solutions

1. Increase of the Size of the Sample: It has been suggested that multicollinearity may be avoided
or reduced if we increased the size of the sample by gathering more observations. Thus Christ
says that by increasing the sample. High covariance among estimated parameters resulting

from multicollinearity in an equation can be reduced, because this covariance’s inversely
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proportional to sample size. This is true only if multicollinearity is due to errors of
measurements, as well as when intercorrelation happens to exist only in our original sample
but not in the population of the X's. If the populations of the variables are multi-collinear,
obviously an increase in the size of the sample will not help in the reduction of multi-collinear

relations among the variables.
2. Substitution of Lagged variables for other Explanatory variables in Distribution Lag models.

3. Introduction of Additional Equations in the Models Application of the Principal Components
Method.

METHODOLOGY

Research methodology is carried out in any sector of the economy in order to discover the facts that
economic data are highly affected by the presence of multicollinearity. In summary, it is a process of finding

answer to problem and deals with multicollinearity in economic data.

The Farrar-Glaubar Test for Multicollinearity

A statistical test for multicollinearity has been recently developed by Farrar and Glauber. It is really a set of
three tests, that is, the authors use three statistics for testing for multicollinearity. The first test is a chi-square
test for the detection of the existence and the severity of multicollinearity in a function including several
explanatory variables. The second test is F-tests for locating which variables are multi-collinear. The third test
is a t-Test for finding out the pattern of multicollinearity, which is for determining which variables are
responsible for the appearance of multi-collinear variables.

Farrar Glaubar considers multicollinearity in a sample departure of the observed X's from orthogonality.
Their approach emerged from the general ideals developed in the preceding paragraphs namely that if
multicollinearity is perfect, then the coefficients becomes indeterminate, and that the inter-correlations
among the various explanatory variables can be measured by multiple correlation coefficients and partial

correlation coefficients. The Farrar Glauber test may be outlined as follows:

Steps in Carrying Out the Farrar-Glaubar Test

1. Conduct the Chi - Square test to detect the existence of severity of multicollinearity.
ii. Carry out F-test to locate the variables(s) inter-correlated, if Chi-Square test is positive.
1ii. Conduct T-test to detect the variables(s) that  are responsible

for multicollinearity if the F-test is positive.
The Chi - Square Test

The following steps are taken in conducting the Chi-Square test.

1. The ideal behind multicollinearity may be considered as a departure from orthogonality. The
stronger the departure from orthogonality, that is the closer the value of the determined to
zero, the stronger the degree of multicollinearity, and vice-versa, starting from this fact,
Farrar-Glauber suggested the following X2 test for detecting the strength of multicollinearity

over the whole set of explanatory variables. The basic hypothesis here is:

Ho: The X's are orthogonal
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It tested against the alternative hypothesis H1: The X's are not orthogonal
2. Compute the matrix (r,) of the Simple correlated coefficients between x1. For instance, if the

explanatory variables are three, then xi becomes x1, x2 and x3.

1 rX2X3 TX2X3
rX2X3 1 rX2X3
rx2x3 71TX2X3 1

4. Calculate D = [rij| the determinant of the matrix (rij)

5. Calculate the Statistics (Farrar and Glauber have found that the quantity) x>= - [T - 1 - 1/6(2k + 5)]

Loge (value of the std. determinant)

(Where y >=obsgrved (compound from the sample). T size of the sample, and K = number of

explanatory variable) has a y? distributed with V = %k (k-1) degrees of freedom.

5. Check yo? with 1/2k (k-1) degrees of freedom (o is the level of significance).

It should be clear that the theoretical value of % > is the value that defines the critical region of the test at the chosen level
of significance and with the appropriate degrees of freedoms. ta

If the observed y 2 is greater than the theoretical value of %* with 'k (k-1) degrees of freedom, we reject the assumption
of orthogonality, that is, we accecf)t that there is multicollinearity in the function. The higher the observed y 2, the more
severe is the multicollinearity.

If the observed y 2 < x* , we accept the assumption of orthogonal, that is S{ale accept that there is no significant
multicollinearity in the function. «

3.2.2. An F-Test for the Location of Multicollinearity

If the chi-square test is positive, the multicollinearity exists.

The next step is to locate the factors which are multi-collinear. Farrar Glaubar computes the multiple correlation
coefficients among the explanatory variables (Rx12....x2....x3xnl,

Rx 2. .oX 2. X g x5 and they test the statistical significance of these multiple correlation coefficients with an F-test.

i Write the xi which is suspected to be inter-correlated with other Xs’ as a function of other Xs’. Thus,

xi=f(x1, x2, x3 ...xk). This can also be rewritten as (Given x2x3 as inter-correlated variable then),

Xi=f(x2x3)=> B2X2+B3X3+U

ii. Compute the parameter

b = (®))As b = ()-1XiX, where X = (x2x3)
3
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iii. ComputeR ? = U2 L A1A24bg LAIA3
Z X2
Y oxx- Yoxx
Wherexx; = -
T
iv.  Computethe F — statistic
Kizl/(j\'— 1)
F

~ (1-R2)/(T—K) |
Wherek=3and T =12
And check F o5 (k-1. T-k) from the F-distribution table.
V. Define the hypothesis
H,: X; is not inter-correlated with x> and X3
H;: x; is inter-correlated with x> and X3
Vi. If F 05<Fcal. accept H; and conclude that x; is inter-correlated with x> and x3
vii.  Repeat the test for other xii suspected to be inter-correlated with others.

1.2.3. A T-Test for the Pattern of Multicollinearity

This is a T-test which aims at the detection of the variables which cause multicollinearity.

To find variables which are responsible for the multicollinearity, we compute the partial correlation coefficients among
the explanatory variables and test their statistical significance with the t-statistic.

Recall that the partial correlation coefficient between any two variable xi and xj, shows the degree of correlation
between these two variables, all others being kept constant. For the two — variable model, the partial correlation

coefficients are given by the formulae.

(ri—riarz3).

r2x1%2 X3 = (120112
r2x1x Xz = ("13-"'137'23).2_
.43 (1-rZ3)(1-1%)
3 — _(rp—rargn)?
reX1X3 X3 (l_rzlit.l(l_r-f}z)

Thebasic hypothesis here is

L= P 0,6 0 ) & TR Xn=0 and is tested against the alternative hypothesis
5 B 7,0, 5 (B, ¢ (BRI XnZ 0

Having estimated the partial correlation coefficients, we test their significance by
computing for each ofthem the statistic.

' V\[(l-rzx,-x,.....xl...xz.‘.....xk)
Where 12XX;...X1...X2...... Xk denotes the partial correlation coefficient between xi and
iXj

Xj.

WA

The observed value t* is compared with the theoretical t value with v = (T-K) degrees

of freedom at the chosen level of significance). If t* > t, we accept that the partial correlation coefficient between the
variable Xi and Xj is significant, that is, the variables Xi and Xj are responsible for multicollinearity in the function. If t*
<t we accept that Xi and Xj are not the cause of multicollinearity, since their partial correlation coefficient is not
statistically significant. With the above three statistics, we find the severity, the location and the pattern of

multicollinearity.
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ANALYSIS AND PRESENTATION OF DATA
Presentation of Data Y = Consumption, X1= Wage income

X2=Non-wage, non-farm income, and

X3 = Farm income

S/N Y X1 X2 X3

1 62.8 43.41 17.10 3.96
2 65.0 46.44 18.65 5.48
3 63.9 4435 17.09 437
4 67.5 47.82 19.28 451
5 71.3 51.02 23.24 4.88
6 76.6 58.71 28.11 6.37
7 86.3 87.69 30.29 8.96
8 95.7 76.73 28.26 9.76
9 98.3 75.91 2791 9.31
10 100.3 77.62 3230 9.85
11 103.2 78.01 31.39 7.21
12 108.9 83.57 35.61 7.39
13 108.5 90.95 37.58 7.98
14 11.4 95.47 35.17 7.42

Source: CIA World fact book, 2011.

ANALYSIS:

Y Y =1219.7,% X1 =957.34,% X>=381.98, Y X3=97.45,

> X1Y=877.152,% X> Y =31929.9640, 3" X5 Y =8876.111

> X1X>=27761.387, Y X1X3=7076.0291, > X»X3=12799.5687

Y Y2 =110780.37, ¥ X12 = 55701.43, ¥ X22 =215255.3, Y X32 = 734.111

T=14
Hypothesis Statement:
Ho: The X’s are orthogonal

And it tested against the alternative hypothesis HI:  The X’s are not orthogonal

& x):
X 2 = .l_ b ol Bl e —
1 T—1 [2 T T I
957.342
=_1 [70099.4766 -7
14—1 14
=4.635.1998
In the same manner,
X1X2 = 1641.0406, X1X3 =412.2589,
X0X3 = 140.715, x32 =55.7895,
X2Y =2144.89, X3Y =386.1278

X22 =653.1965,

X1Y =4310.3716,
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Compute the matrix (r;) using the formula:

_ 1641.0406
T2 = (75351998 % 6531965

=0.9431

412.2589
iz~ vI3635.1998 X 55.7895

=0.8107

140.7751
T23 = JE53.1965 X 55.789¢

=(0.7371
Itis aknown fact that ry=1, if j=1.
Therefore, rirn=r33=1
1 0.9431 0.8107

ri; =[0.9431 1 0.7371]
0.8107 0.7371 1

ID| = |r5| =0.0370

Log:D = Log. 0.0370 =-3.2968
¥ =- [T-1-1/6(2k +5)] Log.
=-[23-1-1/6(2 x 3+ 5)](-3.2968)
=(12.833) x 3.2968

=42.3089

720.05V, where

V=1%k(k-1)

V=1%x3(3-1)

V=%x30)

V=3

o053 =782

Decision Rule:

Since reject Ho if y%cal>y’tab, otherwise accept Ho

Conclusion

Since reject Ho if *cal>ytab, we therefore reject Ho and conclude that there is the presence of Multicollinearity in the
function.

Test 2: An F Test for the Location of Multicollinearity

HO: xi is not inter-correlated with x2 and x3 Hi: xi is inter-correlated with x2 and x3.

Hi: xi is inter-correlated with x2 and x3.

Write X11 = F(x2, x3)

=x1=>B2x2 +B3x3 +u
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Thus b ﬂi‘] XIX)IXIX
Observed that

12%,x 12X : -
YW = XX Xy = [ 653196140715 4
X13X2X13X 3 140.7151 55.7895

[X*X| = 16,640.7668

(xlx)! = ! F 55.7895 —140.7151]
166407668 —140.7151 653.1965

= +0:0034 —0.0085]
—0.0085 0.0393

b= [02] - VAVIVAL> —U.uuca](w‘u.u‘wo)
- bzmv: —0.0085 0.0393 " " 412.2589

2.0753|I

|
2.2529
b2=2.0753, b3 = 2.2529

b2Yx, x2 + b3} x, x3
Y x1 a
_ 2.0753X 1641.0406 + 2.2529 X 412.2589
- 4635.1998
=0.9351 = 0.94
To compute the F — Statistics
_ Ra/(k-1)
Fi = a5
_09351/2
T 0.0649/11
=70.2458

Foos(k-1,T-k)=Fpes(2,11)=3.98

-~
ire
I

Decision Rule:

If Ftab<Fcal, accept H1 otherwise reject H1.

Conclusion

Since Ftab<Fcal,i.e 3.98 < 79.2456, we thereby accept the alternative hypothesis and conclude that X1 is inter-correlated
with X2 and X3.

In the same manner, F2 = Fcal = 15.3375 F3 = Fcal = 21.9863

Testing each Fcal against Ftable i.e comparing F calculation with F tabulated, we realized that each of the Fcal is greater
than Ftab, we therefore conclude that X2 is inter- correlated with X1 and X3 in the case. And X3 is inter-correlated with
X1 and X2 in the last case.

Test3: A T-Test for the Pattern of Mulitcollinearity Hypothesis Statement
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Ho: gXiXj X1.X2 oo -
Hi: Xy X1.X2 o =0

rixix2x3 = o A

(1-r2zy 1 - ray)

- v0Z632Z/vId—3

- V1-0.2642

=1.842

_ 109431-(0.8107x0.7371))2
(1-0.73712)(1- 0.8107%)

0.1194
04567 x0.03428
=0.7627
ria- rizra)’
Rxixsxy = —ronra)

(1 réz1 - r4z)
_108107-(0.9431x0.7371))*

(1-0.7371%)(1—- 0.94319)
0.0133

T 04567x0.03428
=0.2642

(rzz— rari)®
(1- raxy1- r43)
_107371-{0.9431 X 0.0.8107)}?

(1-0.94319)(1- 0.81079)
_ 0.008

T 0.0379
=0.0200

r’x2x3x; =

(riz=ri3rza).?
r2X1Xp X3 = T
V2B T o1ty

SRt = (r13—ri3rz3)?
1253 A1)

5 _ _(ro—raran)?
TIXX2.X3 T (-rti)(1-ry)
The basic hypothesis here is

Ho: BXi%yse X1 X o5 saionssn Xn=0 and is tested against the alternative hypothesis
Hi 1XiXj...X1... X200 eeeee Xn#0

Having estimated the partial correlation coefficients, we test their significance by

computing for each of them the statistic.

i

P .- x)/NT—K)
N =T2X X1 o XD e X)

Where 12XX;...X1...X2...... Xk denotes the partial correlation coefficient between xi and

24



=1.842
3=
=0.734

Table Value

e =taV
a=0.05

V0.7627/V14-3

V1-0.7627

V=T-K=14-3=11

To.0s 11

=1.796

Decision Table
If tea>tean, accept Ho otherwise reject Ho

Conclusion

Since tea>tsy only in the third case, we thereby accept and conclude that the variable

Xz is responsible for the multicollinearity in the function.

Correcting the Effect of Multicollinearity

As we rightly know, the effect of multicollinearity can be corrected through several ways. In this case, we shall adopt

the method which says that this can be minimized or corrected by increasing the sample size.

We, therefore, increase the sample size by eleven (11) and test for the presence of multicollinearity.

The following results were obtained from the analysis.

SIN Y X1 X2 X3 Y X1 X2 X3
1 62.8 43.41 17.1 3.96 3943.84  1884.428  292.41 15.6816
2 65 46.44 18.65 5.48 4225 2156.674  347.8225 30.0304
3 63.9 4435 17.09 437 4083.21 1966.923  292.0681 19.0969
4 67.5 47.82 19.28 451 455625 2286752  371.7184 20.3401
5 71.3 51.02 23.24 4.88 5083.69  2603.04  540.0976 23.8144
6 76.6 58.71 28.11 6.37 5867.56  3446.864  790.1721 405769
7 86.3 87.69 30.29 8.96 7447.69  7689.536  917.4841 80.2816
8 95.7 76.73 28.26 9.76 915849 5887493  798.6276 95.2576
9 98.3 75.91 27.91 9.31 9662.89 5762328  778.9681 86.6761
10 1003 77.62 323 9.85 10060.09  6024.864  1043.29 97.0225
11 1032 78.01 31.39 7.21 10650.24  6085.56  985.3321 51.9841
12 1089  83.57 35.61 7.39 1185921  6983.945  1268.072 54.6121
13 108.5  90.59 37.58 7.98 1177225  8206.548  1412.256 63.6804
14 11.4 95.47 35.17 7.42 129.96 9114.521  1236.929 55.0564
15 4782 46.44 18.63 7.37 2286752 2156.674  347.0769 54.3169
16 51.02 4435 17.01 8.67 2603.04  1966.923  289.3401 75.1689
17 5871 47.82 19.28 9.79 3446.864 2286752  371.7184 95.8441
18 87.69  51.02 23.22 931 7689.536  2603.04  539.1684 86.6761
19 76,73 58.71 28.11 9.85 5887.493  3446.864  790.1721 97.0225
20 7591  87.69 30.29 721 5762.328  7689.536  917.4841 51.9841
21 7762 76.73 28.64 7.39 6024.864  5887.493  820.2496 54.6121
22 7801 75.91 27.91 7.98 6085.56  5762.328  778.9681 63.6804
23 83.57  77.62 323 742 6983.945  6024.864  1043.29 55.0564
24 90.59  78.01 31.39 9.6 8206.548  6085.56  985.3321 92.16
25 37.58  63.9 35.61 10.5 1412256 4083.21 1268.072 110.25
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1884.95 1665.54  674.37 192.5 154889.6 118092.7 19226.12 1570.883

4
Source: CIA World fact book, 2011.

Hypothesis Statement:

Ho: The X’s are orthogonal

And it tested against the alternative hypothesis H1: The X’s are not orthogonal

In the same manner,

Xx2cal=-[T-1-11/6(2k + 5)] Loge

=6.3089

x20.05V, where v =% k(k - 1)
v=%x33-1)v=x3(Q2)

v=3

Xx20.053=7.82

Decision Rule:

Since reject Ho if x2cal>x2tab, otherwise accept Ho
Conclusion

Since x2cal<xtab, we therefore fail to reject Ho and conclude that there is absent of multicollinearity in
the function.

CONCLUSION AND RECOMMENDATIONS
Conclusion

It is obvious from the analysis that the presence and severity of multicollinearity, as well as the pattern and
location of multicollinearity, in a function can be easy detected by Ferrar- Glauber. In this analysis, we

realized that variable X2 is responsible for the multicollinearity in the function.

Recommendations
From this analysis and other analysis, it is obvious that multicollinearity is always present in Economic data
but the severity differs. The following recommendations can be made from this analysis and from other
submissions on multicollinearity.

If the multicollinearity does not seriously affect the estimates of the coefficients, one may tolerate its

presence in the function. Although the integrity of the least estimates is to a certain extent impaired.

The use of Lagged variables for other explanatory variables in Distribution LagModels can reduce the
presence of colinearity.

Introduction of Additional Equations in the Models.
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