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ABSTRACT

This research aims at determining the presence of Multicollinearity in a function using
farrar-glaubar test approach. In most economic data, there is the presence of
Multicollinearity but the severity varies. The degree of this multicollinearity may vary from
function to function. However, Farrar-Glaubar test is used to detect the presence and
severity of Multicollinearity, location of Multicollinearity, and the pattern of
Multicollinearity in a function. How to correct the effect of Multicollinearity was also
covered this research. After analyses were done on the collected data, we realized that,
Multicollinearity is most pronounced in Economic data.
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1.0 INTRODUCTION

Data is simply scientific term for facts, figures, information and measurements. Data,
therefore, include the number of people who gain admission into universities each year,
number of yam produced by each farmer in a year, etc. In other words, data can come from
sector such as Agriculture, Business, Industrial etc. Economic data, on the other hand, are the
data obtained from business transactions which can be in form of buying and selling of goods
and services.

Econometrics is the application of mathematics and statistical method to the analysis of
economic data as mathematical models help us to structure our perception about the forces
generating the data we want to analyze, while statistical method helps to summarize the data,
estimate the parameters of our models and interpret the strength of the evidence for various
hypothesis that we wish to examine. The provided data affect our idea about the
appropriateness of the original model and may result in significant revisions of such models.
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There is, thus, a continuous interplay in economics between mathematical theoretical
modelling of economic behavior, data collection, data summarizing, model fitting and model
evaluation. Theory suggests data to be sought and examined; data availability suggests new
theoretical questions and stimulates the development of new statistical method. The
examination of data in the light of theory lend often to new interpretations and sometimes to
question about its quality or relevance and to attempt to collect new and different data.

Collinearity refers to the existence of a single linear relationship. In other words,
multicollinearity is simply the existence of multiple or several relationships in a linear
relationship. Multicollinearity is not a condition that either exists or does not exist in
economic function, but rather a phenomenon inherent in most relationship due to the nature
of economic magnitudes. There is conclusive evidence concerning the degree of collinearity
which, if present, will affect seriously the parameter estimate intuitively, when any two
explanatory variables are changing in nearly the same way, it becomes extremely difficult to
establish the influence of each one regressor on y separately (Armstong, 2012).

1.1 Aim

This research aims at determining the presence of multicollinearity in a function using farrar-
glauber test approach and the specific objectives are:

I. Test for the location of Multicollinearity.
ii. Test for the pattern of Multicollinearity.

2.0 GENERAL LITERATURE
2.1  Correlation and Regression Analysis

There are various techniques of measuring the existence correlation between two variables.
The most used techniques are correlation and regression analysis.

Correlation is the degree of relationships existing between two or more variables; the
degree of relationship between two variables is called simple correlation. The primary
objective investigating the correlation between two variables is to determine whether there is
any causal connection between them (Becker, 1998).

2.1.1 Correlation Coefficient

The parameter p; is called the population correlation coefficient and it measures the strength
of the linear relationship between x andy. The statistic » measures the strength of
relationship between the sample observations of two variables, it is also called sample
estimate (Waegeman, 2009).

The sample correlation coefficient is defined by the formula:

nyxy—Xx)y
VinEx? — (Ex)?][Zy? - (T y)?]

rxy =
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Where Y is the dependent variable and X is the independent variable.

The value of r is always between -1 and +1 no matter the unit of X and Y. A value of r
near or equal to zero implies little or no linear relationship. The closer r is to 1 or -1. The
stronger the linear relationship between Y and X.

Test of significance for the sample coefficient

p=0i.e. r~N(0, or)

1-7r2
where or =

n-2

Test statistics t is estimated by t = r

n-—2
1-12

With n-2 degree of freedom and this is compared with the appropriate theoretical
value of t base on a level of significance.

2.2  Simple Regression Analysis
Least Square Method

If two variables X and Y are linearly related, their relationship can be expressed by the
following simple linear. Y=a+fx+ei

Where a and 8 are parameters called the regression constant and the regression
coefficient respectively eiis a random variable with mean of zero and variance S? (Tofellis,
2009).

2.3 Multiple Regression Estimation

Multiple regression analysis is a process whereby a relationship is established between two or
more variables in term of an equation so that, given the value of one variable, the value of the
other variable can be predicted (Oloyede 2012).

It is an attempt to determine approximately the value of the population parameters in the
model of Awel (2014). Multiple regressions are concerned with obtaining a mathematical
equation which describes the relationship among three or more variables. Then, the equation
obtained can be used for comparism or purpose of estimation. Dependent variable is a
variable that occur as a result of consequence of other variable called Independent variable.

The multicollinearity effect is observed in a function when all or some of the explanatory
variable high correlated with each other than they are related to the dependent variable.

2.4 Multicollinearity

Cressie, (1996) viewed that; a crucial condition for the application of least squares is that the
explanatory variables are not perfectly linearly correlated(rx;rx; # 1). The term
multicollinearity is used to denote the presence of linear relationship (or near linear
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relationship) among explanatory variables. If the explanatory variables are perfectly linearly
corrected, that is if the correlation coefficient for these variables is equal to unity, the
parameters become indeterminate; it is impossible to obtain numerical values for each
parameter separately and the method of least square breaks down. At the other extreme, if the
explanatory variables are not inter-correlated at all (that is if the correlation coefficient for
these variables is not equal to zero), the variables are called orthogonal (variables whose
covariance is zero: Y, x;x;/n = 0)and there are no problems concerning the estimates of the
coefficients, at least so far as multicollinearity is concerned. Actually, in the case of
orthogonal x’s, there is no need to perform a multiple regression analysis. Each parameter can
be estimated by a simple regression of y on the corresponding regressor: Y=f(x).

In practice, neither of the above extreme cases (of orthogonal X’s or perfect collinear x's) is
often met. In most cases, there is some degree of inter-correlation among the explanatory
variables, due to the interdependence of many economic magnitudes over time. In this event,
the simple correlation coefficient for each pair of explanatory variables will have a value
between zero and unit, the multicollinearity problems may impair the accuracy and stability
of the parameters estimates but the exact effects of colinearity have not yet been theoretically
established.

Multicollinearity is not a condition that either exists or does not exist in economic function,
but rather a phenomenon inherent in most relationship due to the nature of economic
magnitudes. There is no conclusive evidence concerning the degree of co linearity which, if
present, will affect seriously the parameter estimate. Intuitively, when any two explanatory
variables are changing in nearly the same way, it becomes extremely difficult to establish the
influence of each one regressor on y separately. For example, assume that the consumption
expenditure of an individual depends on his income and liquid assets. If over a period of time,
income and the liquid assets change by the same proportion, the influence on consumption of
one of these variables may be erroneously attributed to the other. The effects of these
variables on consumption cannot be sensibly investigated, due to their high inter-correlation
(Aldrich, 2005).

2.5  The Nature of Multicollinearity

The term multicollinearity is due to Ragnar (2013) originally, it means the existence of a
“perfect”, or exact, linear relationship among some or all the explanatory variables of a
regression model. Strictly speaking, multicollinearity refers to the existence of more than one
exact linear relationship, and co linearity refers to the existence of a single linear relationship

involving explanatory variable X;, X ... ..... X (where X1=1 for all observations to allow for
the intercept term), an exact linear relationship is said to exist if the following condition is
satisfied:

7\1X1 + 7\2X2 +o +Aka =0

Where A1)2... Ak are constants such that not all of them are zero simultaneously.
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Today, however, the term multicollinearity is used in a broader sense to include the
case of perfect multicollinearity. As it is, in the case where the X variables are inter-
correlated but not perfectly so, as follows:

)\1X1 + )\2X2 + .......... +}\ka = 0
Where Vi is a stochastic error term.

The preceding algebraic approach to multicollinearity can be portrayed succinctly by the
Ballentine (David, 2005). Three variables say Y1 X2 and X3, represent the variations in Y (the
dependent variable) and X2 and X3 (the explanatory variables). The degree of colinearity can
be measured by the extent of the overlap (shaded area) of the X, and Xs circles. In the
diagram below — (a), there is no overlap between X and Xz, and hence no colinearity. In (b)
through (c), there is a "low' to "high" degree of colinearity - the greater the overlap between
Xz and X3z (i.e. the larger the shaded area), the higher the degree of colinearity. In the
extreme, if X2 and X3 were to overlap completely (or if X2 were completely inside Xs, or vice
versa), colinearity would be perfect.

2.6 Plausibility of the Assumption

Strictly speaking, the assumption concerning multicollinearity unit is that the variables are
not perfectly linearly correlated and it is easily met in practice, because it is very rare for any
two variables to exactly inter-correlated in a linear form. However, the estimates of least
squares may be seriously affected with a less than perfect intercorrelation between the
explanatory variable (Fotheringham, 2002).

2.7 Reasons for Multicollinearity

Firstly, there is a tendency of economic variable to move together over time. Economic
magnitudes are influenced by the same factors and in consequence, once these determining
factors become operative, the economic variables show the same broad pattern or behavior
over time. For example, in periods of booms rapid economic growth, the basic economic
magnitudes grow, although some tend to lag behind others. Thus income, consumption,
savings, investment, prices, employment, tends to rise in periods of economic expansion and
decrease in periods of recession. Growth and tend factors in some series are the most serious
cause of multicollinearity.

Secondly, the use of lagged values of some explanatory variables as separate independent
factors in the relationship. Models with distributed lags have given satisfactory results in
many fields of applied econometrics, and their use is expanding fast. For example, in
consumption function. It has become customary to include among the explanatory variables
past as well as the present levels of income. Similarly, in investment function, distributed lags
concerning past levels of economic activity are introduced as separate explanatory variables.
Naturally, the successive values of certain variable are inter-correlated, for example, income
in the current period is partly determined by its own value in the previous period, and so on.
Thus, multicollinearity is almost certain to exist in distributed lag models.
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Taking the above considerations into account, it is clear that some degree of co linearity is
expected to appear in most economic relationships. It should be noted that although
multicollinearity is usually connected with time series, it is quite frequent in cross section
data as well. For example, in across section, sample of manufacturing firms, labour and
capital inputs are almost always highly inter-correlated because large firms tend to have large
quantities of both factors, while small firms usually have smaller quantities of both labour
and capital. However, multicollinearity tends to be more common and more serious a
problem in time series.

2.8 Effects of Multicollinearity
1. The estimates of the coefficient are indeterminate

2. The standard errors of these estimates become infinitely i.e. the matrix (X*X)
become singular.

3. The estimate regression coefficients individual statistically significant even
though a definite statistical relation exists between the dependent variable and
the set of independent variables.

2.9.0 Consequences of Multicollinearity

In the presence of multicollinearity, the estimate of one variable's impact on y while
controlling for the other tends to be less precise than if predictors were uncorrelated with one
another. The usual interpretation of a regression coefficient is that it provides an estimate of
the effect of a one unit change in an independent variable, X1, holding the other variables
constant. If X is highly correlated with another independent variable, X in the given data
set, then we only have observations for which X1 and Xz have particular relationship (either
positive or negative). We don't have observations for which X; changes Independently of X,
so we have an imprecise estimates of the effect of Independent changes in Xi.

Kutner (2004) affirms that, in some sense, the collinear variables contain the same
information about the dependent variable. If nominally "different” measures actually quantify
the same phenomenon, then they are redundant. Alternatively, if the variables are accorded
different names and perhaps employ different numeric measurement scales but are highly
correlated with each other then they suffer from redundancy.

One of the features of multicollinearity is that the standard errors of the affected
coefficients tend to be large. In that case, the test of the hypothesis that the coefficient is
equal to zero against the alternative that it is not equal to zero leads to a failure to reject the
null hypothesis. However, if a simple linear regression of the dependent variable on this
explanatory variable is estimated, the coefficient will be found to be significant; specifically,
the analysis will reject the hypothesis that the coefficient is insignificant. In the presence of
multicollinearity, an analyst might falsely conclude that there is no linear relationship
between an independent and dependent variable. A principal danger of such data redundancy
is over fitting in regressions analysis models. The best regression models are those in which
the predictor analysis models correlate highly with the dependent (outcome) variables but
correlate at most only minimally with each other. Such a mode is often called "low noise" and
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will be statistically robust (that is it will predict reliably across numerous samples of variables
sets drawn from the same statistical population).

2.9.1 Solutions for the Incidence of Multicollinearity

The solutions which may be adopted if multicollinearity exists in a function vary, depending
of the severity of multicollinarity, on availability of other sources of data (larger samples,
cross-section samples etc.), on the importance of factors which are multicollinearity on the
purpose for which the function is being estimated and other considerations.

1. Some writers have suggested that, if multicollinearity does not seriously affect the
estimates of the coefficients, one may tolerate its presence in the function,
although the integrity of the least estimates is to a certain extent impaired.

2. Others have suggested that if multicollinearity affects some unimportant factors,
one may exclude these factors from the function. Again specification error may
well be expected to undermine the BLU character of the ordinary least squares.

3. Multicollinearity may affect only a part of the b's, while other estimates may
remain fairly stable and reliable. In this case:

a. The reliable b's may be used for any purpose for any purpose, fore case or policy
formulation (which require reliable information about structural coefficients);

b. All the estimates may be used to exist in the forecast period.
2.9.2 Corrective Solutions

1. Increase of the Size of the Sample: It has been suggested that multicollinearity may
be avoided or reduced if we increased the size of the sample by gathering more
observations. Thus Christ says that by increasing the sample. High covariance among
estimated parameters resulting from multicollinearity in an equation can be reduced,
because this covariance’s inversely proportional to sample size. This is true only if
multicollinearity is due to errors of measurements, as well as when intercorrelation
happens to exist only in our original sample but not in the population of the X's. If the
populations of the variables are multi-collinear, obviously an increase in the size of
the sample will not help in the reduction of multi-collinear relations among the
variables.

2. Substitution of Lagged variables for other Explanatory variables in Distribution Lag
models.

3. Introduction of Additional Equations in the Models Application of the Principal
Components Method.

3.0 METHODOLOGY

Research methodology is carried out in any sector of the economy in order to discover the
facts that economic data are highly affected by the presence of multicollinearity. In summary,
it is a process of finding answer to problem and deals with multicollinearity in economic data.
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3.1 The Farrar-Glaubar Test for Multicollinearity

A statistical test for multicollinearity has been recently developed by Farrar and Glauber. It is
really a set of three tests, that is, the authors use three statistics for testing for
multicollinearity. The first test is a chi-square test for the detection of the existence and the
severity of multicollinearity in a function including several explanatory variables. The second
test is F-tests for locating which variables are multi-collinear. The third test is a t-Test for
finding out the pattern of multicollinearity, which is for determining which variables are
responsible for the appearance of multi-collinear variables.

Farrar Glaubar considers multicollinearity in a sample departure of the observed X's from
orthogonality. Their approach emerged from the general ideals developed in the preceding
paragraphs namely that if multicollinearity is perfect, then the coefficients becomes
indeterminate, and that the inter-correlations among the various explanatory variables can be
measured by multiple correlation coefficients and partial correlation coefficients. The Farrar
Glauber test may be outlined as follows:

3.2  Steps in Carrying Out the Farrar-Glaubar Test

I. Conduct the Chi - Square test to detect the existence of severity of
multicollinearity.

ii. Carry out F-test to locate the variables(s) inter-correlated, if Chi-Square test is
positive.

iii. Conduct T-test to detect the variables(s) that are responsible for
multicollinearity if the F-test is positive.

3.2.1 The Chi - Square Test
The following steps are taken in conducting the Chi-Square test.

1. The ideal behind multicollinearity may be considered as a departure from
orthogonality. The stronger the departure from orthogonality, that is the closer the
value of the determined to zero, the stronger the degree of multicollinearity, and
vice-versa, starting from this fact, Farrar-Glauber suggested the following X? test
for detecting the strength of multicollinearity over the whole set of explanatory
variables. The basic hypothesis here is:

Ho:  The X's are orthogonal
It tested against the alternative hypothesis
Hi:  The X's are not orthogonal

2. Compute the matrix (r,) of the Simple correlated coefficients between xi. For
instance, if the explanatory variables are three, then xi becomes x1, X2 and Xs.
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1 TX3X3 TX3X3
TX5X3 1 TXX3
TXyX3 TXpX3 1

4. Calculate D = |rjj| the determinant of the matrix (rij)
5. Calculate the Statistics (Farrar and Glauber have found that the quantity)

x’=- [T - 1 - 1/6(2k + 5)] Loge (value of the std. determinant)

(Where yca’=0bserved (compound from the sample). T size of the sample, and K = number of
explanatory variable) has a y? distributed with V = %k (k-1) degrees of freedom.

5. Check ya? with 1/2k (k-1) degrees of freedom (a is the level of significance).

It should be clear that the theoretical value of ywv?> is the value that defines the critical
region of the test at the chosen level of significance and with the appropriate degrees of
freedoms.

If the observed ycal® is greater than the theoretical value of 2 with %k (k-1) degrees of
freedom, we reject the assumption of orthogonality, that is, we accept that there is
multicollinearity in the function. The higher the observed yca?, the more severe is the
multicollinearity.

If the observed yeca® < % , We accept the assumption of orthogonal, that is we accept
that there is no significant multicollinearity in the function.

3.2.2. An F-Test for the Location of Multicollinearity
If the chi-square test is positive, the multicollinearity exists.

The next step is to locate the factors which are multi-collinear. Farrar Glaubar computes the
multiple correlation coefficients among the explanatory variables (Rxi?%....x2... Xs........ Xn1,
RX2.... Xi.. X3........ xn1) and they test the statistical significance of these multiple

correlation coefficients with an F-test.

Steps:

i Write the x; which is suspected to be inter-correlated with other Xs’ as a function of
other Xs’. Thus, xi=f(X1, X2, X3 ...xk). This can also be rewritten as (Given x2X3 as
inter-correlated variable then),

Xi=f(X2x3)=> B2X>+B3X3+U

ii. Compute the parameter

b= (Z;)As b = (x1x)-1X1X, where X = (X2Xa)
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by, Y x1x Yx1x
iii.  Compute Rj2 = 22124 27173
Xx,2

XXX N XiXj
T
iv. Compute the F — statistic
_ Reygoy
(1 =Ry2)/(T - K)
Wherek=3and T =12
And check F o5 (k-1, T-k) from the F-distribution table.
V. Define the hypothesis
Ho: Xi is not inter-correlated with x2 and x3
Hi: xi is inter-correlated with x2 and x3
Vi, If Fos<Fcal, accept Hi and conclude that X1 is inter-correlated with x> and x3
vii.  Repeat the test for other xii suspected to be inter-correlated with others.

Where xiXj =

F

1.2.3. A T-Test for the Pattern of Multicollinearity
This is a T-test which aims at the detection of the variables which cause multicollinearity.

To find variables which are responsible for the multicollinearity, we compute the
partial correlation coefficients among the explanatory variables and test their statistical
significance with the t-statistic.

Recall that the partial correlation coefficient between any two variable xi and x;,
shows the degree of correlation between these two variables, all others being kept constant.
For the two — variable model, the partial correlation coefficients are given by the formulae.

(7"12—7”137"23)-2

2
ToX1X> Xq =
17273 7 (1-12,5)(1-1g)
rzx X Xa = (7"13—7”137"23)-2
12273 7 (1-12,5)(1-13)
(ry—151731).2
rlexz_"xg — 2 21731

(1-1r213)(A-18)
The basic hypothesis here is
Ho: IXiXj...X1..X2. ... .... xn = 0 and is tested against the alternative hypothesis
Hi: rXiXj..X1..X2......... xn# 0
Having estimated the partial correlation coefficients, we test their significance by
computing for each of them the statistic.

t *=

Xj.

The observed value t* is compared with the theoretical t value with v = (T-K) degrees
of freedom at the chosen level of significance). If t* > t, we accept that the partial correlation
coefficient between the variable Xj and X; is significant, that is, the variables Xi and Xj are
responsible for multicollinearity in the function. If t* <t we accept that X; and Xj are not the
cause of multicollinearity, since their partial correlation coefficient is not statistically
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significant. With the above three statistics, we find the severity, the location and the pattern
of multicollinearity.

4.0 ANALYSIS AND PRESENTATION OF DATA
4.1  Presentation of Data

Y = Consumption,

X1=Wage income

X>= Non-wage, non-farm income, and

X3 = Farm income

S/N Y X1 X2 X3

1 62.8 43.41 17.10 3.96
2 65.0 46.44 18.65 5.48
3 63.9 44.35 17.09 4.37
4 67.5 47.82 19.28 451
5 71.3 51.02 23.24 4.88
6 76.6 58.71 28.11 6.37
7 86.3 87.69 30.29 8.96
8 95.7 76.73 28.26 9.76
9 98.3 75.91 27.91 9.31
10 100.3 77.62 32.30 9.85
11 103.2 78.01 31.39 7.21
12 108.9 83.57 35.61 7.39
13 108.5 90.95 37.58 7.98
14 11.4 95.47 35.17 7.42

Source: CIA World fact book, 2011.

2 Y =1219.7,% X, = 957.34,) X, = 381.98, Y X; = 97.45,

Y X,Y =877.152,% X, Y = 31929.9640,) X3 Y = 8876.111

Y. XX, =27761.387, Y X;X; = 7076.0291, ), X, X5 = 2799.5687

>V, =110780.37,% X,2 = 55701.43,% X,2 = 215255.3, X32 = 734.111
T=14

Hypothesis Statement:

Ho:  The X’s are orthogonal
And it tested against the alternative hypothesis

Hi:  The X’s are not orthogonal

<zx>2]

1
Xz = —|hxiz —
1 T—121 T

2
=1 [70099.4766 _ 25734 ]
14-1

=4,635.1998
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In the same manner,

X1 X7 = 1641.0406, X1 X3 = 412.2589, X5?% = 653.1965,
XoX3 = 140.715, X3% = 55,7895, X1Y =4310.3716,
XoY = 2144.89, X3Y = 386.1278

Compute the matrix (rjj) using the formula:

X,:Xj

T, =

) \/Xizsz

- 1641.0406

12 ™ /26351998 x 653.1965
=0.9431

S 412.2589

13 ™ /14635.1998 x 55.7895
=0.8107

y _ 140.7751

23 7 /653.1965 x 55.7895
=0.7371

It is a known fact that rij=1, if j=i.
Therefore, riarz2 =ra3=1

1 0.9431 0.8107
r;j = 10.9431 1 0.7371
0.8107 0.7371 1

ID| = |rij| = 0.0370

LogeD = Loge 0.0370 = -3.2968

v2eal = - [T — 1 —1/6(2k + 5)] Loge
=-[23-1-1/6(2 x 3 + 5)] (-3.2968)
= (12.833) x 3.2968

= 42.3089

Y2005V, Where

V =%k (k-1)

V =% x 3(3-1)

V =% x3(2)
V=3
xzo,os 3=7.82
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Decision Rule:
Since reject Ho if y%ca>y’tab, Otherwise accept Ho

Conclusion

Since reject Ho if ¥%ca>y%ab, We therefore reject Ho and conclude that there is the
presence of Multicollinearity in the function.

Test 2: An F Test for the Location of Multicollinearity
Ho: xi is not inter-correlated with x2 and x3
Hi: xi is inter-correlated with x2 and Xs.

Write X11 = F(X2, X3)

=X1=>BoX2 + Bsxzg+ U

Thus b =[] (XEXYIXEX
B3
Observed that
1v _ [X12X,Xx12X;5 _ 653.196140.715
KX= [X13X2X13X3] B [140.7151 55.7895]
|X'X| = 16,640.7668
1 55.7895 —140.7151

1 -1 _
(x"x) 16,640.7668 L—140.7151  653.1965

_ [ 0.0034 —0.0085
—0.0085 0.0393

b= bz] _ [0.0034 —0.0085 (16#1.0406)
bs ~0.0085 0.0393 1\ 412.2589
_ [2.0753
2.2529

b2 =2.0753, b3 = 2.2529

by Y x, x; + b3 Y x, X3
Zx12

2.0753x1641.0406 + 2.2529x 412.2589
4635.1998

=0.9351=0.94

To compute the F — Statistics
_ Rp/(k-1)

T (1-R2)/(T-K)
_0.9351/2

T 0.0649/11

=79.2458

Foos (k- 1, T-Kk)=Foos(2,11) =3.98
Decision Rule:

If Fan<Fcal, accept Hy otherwise reject Hi.
Conclusion

1
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Since Fubn<Fca,i.e 3.98 < 79.2456, we thereby accept the alternative hypothesis and
conclude that X is inter-correlated with Xz and Xa.

In the same manner,

Fo = Fea = 15.3375

F3 = Fea = 21.9863

Testing each Fca against Fuane 1.6 comparing F calculation with F tabulated, we
realized that each of the Fca is greater than Fiwp, we therefore conclude that X is inter-
correlated with X1 and X3 in the case. And X3 is inter-correlated with X1 and Xz in the last
case.

Test3: A T-Test for the Pattern of Mulitcollinearity

Hypothesis Statement
Ho: IXiXjX1.X2..ovnnnnn. xn=0
Hal IXiXj X1 X2, oovennnnn, xn# 0
_ 2
r2x1x2x3 — (12— T13723)

(1-7r223)(1 —r?213)

. V0.2642/V14-3

27 Vi-02642
=1.842

_ [0.9431-(0.8107 x 0.7371)]?
T (1-0.73712)(1- 0.81072)

i 0.1194
T 0.4567 x 0.03428
=0.7627
2
T13— 11T
r2x1x3x2 _ (13— T12723)

(1—7223)(1- r?12)
_ [0.8107-(0.9431x0.7371)]?

(1-0.73712)(1— 0.94312)
0.0133

0.4567 x 0.03428

=0.2642

(r23=T21713)°
(1-7r213)(1-r213)
_ [0.7371-(0.9431 x 0.0.8107)]?

(1-0.94312)(1- 0.81072)
0.008

0.0379

=0.0200

r2x,x3x; =

t= (TX(X X e x1)/NT—k
T Ja- T2XX XX e Xk)
b= 10.02/v14-3

L™ vi-oo2
=0.0426/0.9899
=0.0430

= V0.2642/V14-3
27 Vi-02642
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=1.842
_ \0.7627/V14-3

t; =

=0.734

Table Value

V1-0.7627

ttan =tV
a=0.05
V=T-K=14-3=11
=1.796

Toos 11

Decision Table

If tca>tian, accept Ho otherwise reject Ho

Conclusion
Since tca>tian ONly in the third case, we thereby accept and conclude that the variable
X2 is responsible for the multicollinearity in the function.

4.2  Correcting the Effect of Multicollinearity
As we rightly know, the effect of multicollinearity can be corrected through several ways. In
this case, we shall adopt the method which says that this can be minimized or corrected by

increasing the sample size.
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We, therefore, increase the sample size by eleven (11) and test for the presence of
multicollinearity.
The following results were obtained from the analysis.

S/N Y X1 X2 X3 Y? X412 X2 X3?

1 62.8 43.41 17.1 3.96 3943.84 1884.428 292.41 15.6816
2 65 46.44 18.65 5.48 4225 2156.674 347.8225 30.0304
3 63.9 44.35 17.09 4.37 4083.21 1966.923 292.0681 19.0969
4 67.5 47.82 19.28 4.51 4556.25 2286.752 371.7184 20.3401
5 71.3 51.02 23.24 4.88 5083.69 2603.04 540.0976 23.8144
6 76.6 58.71 28.11 6.37 5867.56 3446.864 790.1721 405769
7 86.3 87.69 30.29 8.96 7447.69 7689.536 917.4841 80.2816
8 95.7 76.73 28.26 9.76 9158.49 5887.493 798.6276 95.2576
9 98.3 75.91 27.91 9.31 9662.89 5762.328 778.9681 86.6761
10 100.3 77.62 32.3 9.85 10060.09 6024.864 1043.29 97.0225
11 103.2 78.01 31.39 7.21 10650.24 6085.56 985.3321 51.9841
12 108.9 83.57 35.61 7.39 11859.21 6983.945 1268.072 54.6121
13 108.5 90.59 37.58 7.98 11772.25 8206.548 1412.256 63.6804
14 114 95.47 35.17 7.42 129.96 9114.521 1236.929 55.0564
15 47.82 46.44 18.63 7.37 2286.752 2156.674 347.0769 54.3169
16 51.02 44.35 17.01 8.67 2603.04 1966.923 289.3401 75.1689
17 58.71 47.82 19.28 9.79 3446.864 2286.752 371.7184 95.8441
18 87.69 51.02 23.22 9.31 7689.536 2603.04 539.1684 86.6761
19 76.73 58.71 28.11 9.85 5887.493 3446.864 790.1721 97.0225
20 75.91 87.69 30.29 7.21 5762.328 7689.536 917.4841 51.9841
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21 77.62 76.73 28.64  7.39 6024.864 5887.493 820.2496 54.6121

22 78.01 75.91 2791  7.98 6085.56 5762.328 778.9681 63.6804

23 83.57 77.62 32.3 7.42 6983.945 6024.864 1043.29 55.0564

24 90.59 78.01 3139 96 8206.548 6085.56 985.3321 92.16

25 37.58 63.9 3561 10.5 1412.256 4083.21 1268.072 110.25
1884.95 1665.54 674.37 19254 154889.6 118092.7 19226.12 1570.883

Source: CIA World fact book, 2011.
Hypothesis Statement:
Ho:  The X’s are orthogonal
And it tested against the alternative hypothesis
Hi:  The X’s are not orthogonal
In the same manner,
YPeal = -[T—1—11/6(2k + 5)] Loge
=6.3089
Y005V, where
v=%kk-1)
v=%x33-1)
v=X3(2)
v=3
%005 3 =7.82

Decision Rule:

Since reject Ho if y%ca>y?tab, Otherwise accept Ho

Conclusion

Since y%ca<y’wb, We therefore fail to reject Ho and conclude that there is absent of
multicollinearity in the function.

5.0 CONCLUSION AND RECOMMENDATIONS

5.1  Conclusion

It is obvious from the analysis that the presence and severity of multicollinearity, as well as
the pattern and location of multicollinearity, in a function can be easy detected by Ferrar-
Glauber. In this analysis, we realized that variable Xz is responsible for the multicollinearity
in the function.

5.2 Recommendations

From this analysis and other analysis, it is obvious that multicollinearity is always present in
Economic data but the severity differs. The following recommendations can be made from
this analysis and from other submissions on multicollinearity.

1. If the multicollinearity does not seriously affect the estimates of the coefficients, one
may tolerate its presence in the function. Although the integrity of the least estimates is to a
certain extent impaired.
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2. The use of Lagged variables for other explanatory variables in Distribution Lag
Models can reduce the presence of colinearity.
3. Introduction of Additional Equations in the Models.
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