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ABSTRACT 

This research aims at determining the presence of Multicollinearity in a function using 

farrar-glaubar test approach. In most economic data, there is the presence of 

Multicollinearity but the severity varies. The degree of this multicollinearity may vary from 

function to function. However, Farrar-Glaubar test is used to detect the presence and 

severity of Multicollinearity, location of Multicollinearity, and the pattern of 

Multicollinearity in a function. How to correct the effect of Multicollinearity was also 

covered this research. After analyses were done on the collected data, we realized that, 

Multicollinearity is most pronounced in Economic data. 

Keywords: multicollinearity, farrar-glaubar, economic data, variables. 

 

1.0 INTRODUCTION 

Data is simply scientific term for facts, figures, information and measurements. Data, 

therefore, include the number of people who gain admission into universities each year, 

number of yam produced by each farmer in a year, etc. In other words, data can come from 

sector such as Agriculture, Business, Industrial etc. Economic data, on the other hand, are the 

data obtained from business transactions which can be in form of buying and selling of goods 

and services. 

Econometrics is the application of mathematics and statistical method to the analysis of 

economic data as mathematical models help us to structure our perception about the forces 

generating the data we want to analyze, while statistical method helps to summarize the data, 

estimate the parameters of our models and interpret the strength of the evidence for various 

hypothesis that we wish to examine. The provided data affect our idea about the 

appropriateness of the original model and may result in significant revisions of such models. 
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There is, thus, a continuous interplay in economics between mathematical theoretical 

modelling of economic behavior, data collection, data summarizing, model fitting and model 

evaluation. Theory suggests data to be sought and examined; data availability suggests new 

theoretical questions and stimulates the development of new statistical method. The 

examination of data in the light of theory lend often to new interpretations and sometimes to 

question about its quality or relevance and to attempt to collect new and different data. 

Collinearity refers to the existence of a single linear relationship. In other words, 

multicollinearity is simply the existence of multiple or several relationships in a linear 

relationship. Multicollinearity is not a condition that either exists or does not exist in 

economic function, but rather a phenomenon inherent in most relationship due to the nature 

of economic magnitudes. There is conclusive evidence concerning the degree of collinearity 

which, if present, will affect seriously the parameter estimate intuitively, when any two 

explanatory variables are changing in nearly the same way, it becomes extremely difficult to 

establish the influence of each one regressor on y separately (Armstong, 2012). 

 

1.1 Aim  

This research aims at determining the presence of multicollinearity in a function using farrar-

glauber test approach and the specific objectives are: 

i. Test for the location of Multicollinearity. 

ii. Test for the pattern of Multicollinearity.  

2.0 GENERAL LITERATURE 

2.1 Correlation and Regression Analysis  

There are various techniques of measuring the existence correlation between two variables. 

The most used techniques are correlation and regression analysis. 

Correlation is the degree of relationships existing between two or more variables; the 

degree of relationship between two variables is called simple correlation. The primary 

objective investigating the correlation between two variables is to determine whether there is 

any causal connection between them (Becker, 1998). 

2.1.1  Correlation Coefficient  

The parameter 𝜌𝑖 is called the population correlation coefficient and it measures the strength 

of the linear relationship between 𝑥 and 𝑦. The statistic 𝑟 measures the strength of 

relationship between the sample observations of two variables, it is also called sample 

estimate (Waegeman, 2009). 

The sample correlation coefficient is defined by the formula: 

𝑟𝑥𝑦 =  
𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][∑ 𝑦2 − (∑ 𝑦)2]
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Where Y is the dependent variable and X is the independent variable. 

The value of r is always between -1 and +1 no matter the unit of X and Y. A value of r 

near or equal to zero implies little or no linear relationship. The closer r is to 1 or -1. The 

stronger the linear relationship between Y and X. 

Test of significance for the sample coefficient 

ρ=0 i.e. r~N(0, σr) 

where 𝜎𝑟 = √
1−𝑟2

𝑛−2
 

Test statistics t is estimated by 𝑡 = 𝑟√
𝑛−2

1−𝑟2
 

With n-2 degree of freedom and this is compared with the appropriate theoretical 

value of t base on a level of significance. 

 

2.2 Simple Regression Analysis 

Least Square Method 

If two variables X and Y are linearly related, their relationship can be expressed by the 

following simple linear. 𝑌 = 𝛼 + 𝛽𝑥 + 𝑒𝑖 

 Where α and 𝛽 are parameters called the regression constant and the regression 

coefficient respectively ei is a random variable with mean of zero and variance S2 (Tofellis, 

2009). 

2.3 Multiple Regression Estimation 

Multiple regression analysis is a process whereby a relationship is established between two or 

more variables in term of an equation so that, given the value of one variable, the value of the 

other variable can be predicted (Oloyede 2012). 

It is an attempt to determine approximately the value of the population parameters in the 

model of Awel (2014). Multiple regressions are concerned with obtaining a mathematical 

equation which describes the relationship among three or more variables. Then, the equation 

obtained can be used for comparism or purpose of estimation. Dependent variable is a 

variable that occur as a result of consequence of other variable called Independent variable. 

The multicollinearity effect is observed in a function when all or some of the explanatory 

variable high correlated with each other than they are related to the dependent variable. 

2.4 Multicollinearity 

Cressie, (1996) viewed that; a crucial condition for the application of least squares is that the 

explanatory variables are not perfectly linearly correlated(𝑟𝑥𝑖𝑟𝑥𝑗 ≠ 1). The term 

multicollinearity is used to denote the presence of linear relationship (or near linear 
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relationship) among explanatory variables. If the explanatory variables are perfectly linearly 

corrected, that is if the correlation coefficient for these variables is equal to unity, the 

parameters become indeterminate; it is impossible to obtain numerical values for each 

parameter separately and the method of least square breaks down. At the other extreme, if the 

explanatory variables are not inter-correlated at all (that is if the correlation coefficient for 

these variables is not equal to zero), the variables are called orthogonal (variables whose 

covariance is zero: ∑ 𝑥𝑖𝑥𝑗 𝑛⁄ = 0)and there are no problems concerning the estimates of the 

coefficients, at least so far as multicollinearity is concerned. Actually, in the case of 

orthogonal x’s, there is no need to perform a multiple regression analysis. Each parameter can 

be estimated by a simple regression of y on the corresponding regressor: Y=f(x).  

In practice, neither of the above extreme cases (of orthogonal X’s or perfect collinear x's) is 

often met. In most cases, there is some degree of inter-correlation among the explanatory 

variables, due to the interdependence of many economic magnitudes over time. In this event, 

the simple correlation coefficient for each pair of explanatory variables will have a value 

between zero and unit, the multicollinearity problems may impair the accuracy and stability 

of the parameters estimates but the exact effects of colinearity have not yet been theoretically 

established. 

Multicollinearity is not a condition that either exists or does not exist in economic function, 

but rather a phenomenon inherent in most relationship due to the nature of economic 

magnitudes. There is no conclusive evidence concerning the degree of co linearity which, if 

present, will affect seriously the parameter estimate. Intuitively, when any two explanatory 

variables are changing in nearly the same way, it becomes extremely difficult to establish the 

influence of each one regressor on y separately. For example, assume that the consumption 

expenditure of an individual depends on his income and liquid assets. If over a period of time, 

income and the liquid assets change by the same proportion, the influence on consumption of 

one of these variables may be erroneously attributed to the other. The effects of these 

variables on consumption cannot be sensibly investigated, due to their high inter-correlation 

(Aldrich, 2005). 

2.5 The Nature of Multicollinearity  

The term multicollinearity is due to Ragnar (2013) originally, it means the existence of a 

“perfect”, or exact, linear relationship among some or all the explanatory variables of a 

regression model. Strictly speaking, multicollinearity refers to the existence of more than one 

exact linear relationship, and co linearity refers to the existence of a single linear relationship 

involving explanatory variable 𝑋1, 𝑋2 … … . . 𝑋𝑘(where X1=1 for all observations to allow for 

the intercept term), an exact linear relationship is said to exist if the following condition is 

satisfied: 

λ1𝑋1 + λ2𝑋2 +………. +λ𝑘𝑋𝑘 = 0 

Where λ1λ2… λk are constants such that not all of them are zero simultaneously. 
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Today, however, the term multicollinearity is used in a broader sense to include the 

case of perfect multicollinearity. As it is, in the case where the X variables are inter-

correlated but not perfectly so, as follows: 

λ1𝑋1 + λ2𝑋2 +………. +λ𝑘𝑋𝑘 = 0 

Where Vi is a stochastic error term. 

The preceding algebraic approach to multicollinearity can be portrayed succinctly by the 

Ballentine (David, 2005). Three variables say Y1 X2 and X3, represent the variations in Y (the 

dependent variable) and X2 and X3 (the explanatory variables). The degree of colinearity can 

be measured by the extent of the overlap (shaded area) of the X2 and X3 circles. In the 

diagram below − (a), there is no overlap between X2 and X3, and hence no colinearity. In (b) 

through (c), there is a "low' to "high" degree of colinearity - the greater the overlap between 

X2 and X3 (i.e. the larger the shaded area), the higher the degree of colinearity. In the 

extreme, if X2 and X3 were to overlap completely (or if X2 were completely inside X3, or vice 

versa), colinearity would be perfect.  

2.6 Plausibility of the Assumption 

Strictly speaking, the assumption concerning multicollinearity unit is that the variables are 

not perfectly linearly correlated and it is easily met in practice, because it is very rare for any 

two variables to exactly inter-correlated in a linear form. However, the estimates of least 

squares may be seriously affected with a less than perfect intercorrelation between the 

explanatory variable (Fotheringham, 2002). 

2.7 Reasons for Multicollinearity 

Firstly, there is a tendency of economic variable to move together over time. Economic 

magnitudes are influenced by the same factors and in consequence, once these determining 

factors become operative, the economic variables show the same broad pattern or behavior 

over time. For example, in periods of booms rapid economic growth, the basic economic 

magnitudes grow, although some tend to lag behind others. Thus income, consumption, 

savings, investment, prices, employment, tends to rise in periods of economic expansion and 

decrease in periods of recession. Growth and tend factors in some series are the most serious 

cause of multicollinearity. 

Secondly, the use of lagged values of some explanatory variables as separate independent 

factors in the relationship. Models with distributed lags have given satisfactory results in 

many fields of applied econometrics, and their use is expanding fast. For example, in 

consumption function. It has become customary to include among the explanatory variables 

past as well as the present levels of income. Similarly, in investment function, distributed lags 

concerning past levels of economic activity are introduced as separate explanatory variables. 

Naturally, the successive values of certain variable are inter-correlated, for example, income 

in the current period is partly determined by its own value in the previous period, and so on. 

Thus, multicollinearity is almost certain to exist in distributed lag models. 
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Taking the above considerations into account, it is clear that some degree of co linearity is 

expected to appear in most economic relationships. It should be noted that although 

multicollinearity is usually connected with time series, it is quite frequent in cross section 

data as well. For example, in across section, sample of manufacturing firms, labour and 

capital inputs are almost always highly inter-correlated because large firms tend to have large 

quantities of both factors, while small firms usually have smaller quantities of both labour 

and capital. However, multicollinearity tends to be more common and more serious a 

problem in time series. 

2.8 Effects of Multicollinearity 

1. The estimates of the coefficient are indeterminate 

2. The standard errors of these estimates become infinitely i.e. the matrix (X1X) 

become singular. 

3. The estimate regression coefficients individual statistically significant even 

though a definite statistical relation exists between the dependent variable and 

the set of independent variables. 

2.9.0 Consequences of Multicollinearity  

In the presence of multicollinearity, the estimate of one variable's impact on y while 

controlling for the other tends to be less precise than if predictors were uncorrelated with one 

another. The usual interpretation of a regression coefficient is that it provides an estimate of 

the effect of a one unit change in an independent variable, X1, holding the other variables 

constant. If X1 is highly correlated with another independent variable, X2 in the given data 

set, then we only have observations for which X1 and X2 have particular relationship (either 

positive or negative). We don't have observations for which X1 changes Independently of X2, 

so we have an imprecise estimates of the effect of Independent changes in X1.  

Kutner (2004) affirms that, in some sense, the collinear variables contain the same 

information about the dependent variable. If nominally "different” measures actually quantify 

the same phenomenon, then they are redundant. Alternatively, if the variables are accorded 

different names and perhaps employ different numeric measurement scales but are highly 

correlated with each other then they suffer from redundancy. 

One of the features of multicollinearity is that the standard errors of the affected 

coefficients tend to be large. In that case, the test of the hypothesis that the coefficient is 

equal to zero against the alternative that it is not equal to zero leads to a failure to reject the 

null hypothesis. However, if a simple linear regression of the dependent variable on this 

explanatory variable is estimated, the coefficient will be found to be significant; specifically, 

the analysis will reject the hypothesis that the coefficient is insignificant. In the presence of 

multicollinearity, an analyst might falsely conclude that there is no linear relationship 

between an independent and dependent variable. A principal danger of such data redundancy 

is over fitting in regressions analysis models. The best regression models are those in which 

the predictor analysis models correlate highly with the dependent (outcome) variables but 

correlate at most only minimally with each other. Such a mode is often called "low noise" and 
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will be statistically robust (that is it will predict reliably across numerous samples of variables 

sets drawn from the same statistical population). 

2.9.1 Solutions for the Incidence of Multicollinearity 

The solutions which may be adopted if multicollinearity exists in a function vary, depending 

of the severity of multicollinarity, on availability of other sources of data (larger samples, 

cross-section samples etc.), on the importance of factors which are multicollinearity on the 

purpose for which the function is being estimated and other considerations. 

1. Some writers have suggested that, if multicollinearity does not seriously affect the 

estimates of the coefficients, one may tolerate its presence in the function, 

although the integrity of the least estimates is to a certain extent impaired. 

2. Others have suggested that if multicollinearity affects some unimportant factors, 

one may exclude these factors from the function. Again specification error may 

well be expected to undermine the BLU character of the ordinary least squares. 

3. Multicollinearity may affect only a part of the b's, while other estimates may 

remain fairly stable and reliable. In this case: 

a. The reliable b's may be used for any purpose for any purpose, fore case or policy 

formulation (which require reliable information about structural coefficients); 

b. All the estimates may be used to exist in the forecast period.  

2.9.2 Corrective Solutions  

1. Increase of the Size of the Sample: It has been suggested that multicollinearity may 

be avoided or reduced if we increased the size of the sample by gathering more 

observations. Thus Christ says that by increasing the sample. High covariance among 

estimated parameters resulting from multicollinearity in an equation can be reduced, 

because this covariance’s inversely proportional to sample size. This is true only if 

multicollinearity is due to errors of measurements, as well as when intercorrelation 

happens to exist only in our original sample but not in the population of the X's. If the 

populations of the variables are multi-collinear, obviously an increase in the size of 

the sample will not help in the reduction of multi-collinear relations among the 

variables. 

2. Substitution of Lagged variables for other Explanatory variables in Distribution Lag 

models. 

3. Introduction of Additional Equations in the Models Application of the Principal 

Components Method. 

 

3.0 METHODOLOGY 

Research methodology is carried out in any sector of the economy in order to discover the 

facts that economic data are highly affected by the presence of multicollinearity. In summary, 

it is a process of finding answer to problem and deals with multicollinearity in economic data. 
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3.1 The Farrar-Glaubar Test for Multicollinearity 

A statistical test for multicollinearity has been recently developed by Farrar and Glauber. It is 

really a set of three tests, that is, the authors use three statistics for testing for 

multicollinearity. The first test is a chi-square test for the detection of the existence and the 

severity of multicollinearity in a function including several explanatory variables. The second 

test is F-tests for locating which variables are multi-collinear. The third test is a t-Test for 

finding out the pattern of multicollinearity, which is for determining which variables are 

responsible for the appearance of multi-collinear variables. 

Farrar Glaubar considers multicollinearity in a sample departure of the observed X's from 

orthogonality. Their approach emerged from the general ideals developed in the preceding 

paragraphs namely that if multicollinearity is perfect, then the coefficients becomes 

indeterminate, and that the inter-correlations among the various explanatory variables can be 

measured by multiple correlation coefficients and partial correlation coefficients. The Farrar 

Glauber test may be outlined as follows: 

3.2 Steps in Carrying Out the Farrar-Glaubar Test 

i. Conduct the Chi - Square test to detect the existence of severity of 

multicollinearity. 

ii. Carry out F-test to locate the variables(s) inter-correlated, if Chi-Square test is 

positive. 

iii. Conduct T-test to detect the variables(s) that are responsible for 

multicollinearity if the F-test is positive. 

3.2.1 The Chi - Square Test 

The following steps are taken in conducting the Chi-Square test. 

1. The ideal behind multicollinearity may be considered as a departure from 

orthogonality. The stronger the departure from orthogonality, that is the closer the 

value of the determined to zero, the stronger the degree of multicollinearity, and 

vice-versa, starting from this fact, Farrar-Glauber suggested the following X2 test 

for detecting the strength of multicollinearity over the whole set of explanatory 

variables. The basic hypothesis here is: 

Ho: The X's are orthogonal 

It tested against the alternative hypothesis  

H1: The X's are not orthogonal 

2. Compute the matrix (r,) of the Simple correlated coefficients between x1. For 

instance, if the explanatory variables are three, then xi becomes x1, x2 and x3. 

3.  
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1 𝑟𝑥2𝑥3 𝑟𝑥2𝑥3

𝑟𝑥2𝑥3 1 𝑟𝑥2𝑥3

𝑟𝑥2𝑥3 𝑟𝑥2𝑥3 1
 

 

4. Calculate D = |rij| the determinant of the matrix (rij) 

5. Calculate the Statistics (Farrar and Glauber have found that the quantity) 

χ2= - [T - 1 - 1/6(2k + 5)] Loge (value of the std. determinant)  

(Where χcal
2=observed (compound from the sample). T size of the sample, and K = number of 

explanatory variable) has a χ2 distributed with V = ½k (k-1) degrees of freedom. 

5. Check χα2 with 1/2k (k-1) degrees of freedom (α is the level of significance).  

It should be clear that the theoretical value of χtab
2, is the value that defines the critical 

region of the test at the chosen level of significance and with the appropriate degrees of 

freedoms. 

If the observed χcal
2 is greater than the theoretical value of χ2 with ½k (k-1) degrees of 

freedom, we reject the assumption of orthogonality, that is, we accept that there is 

multicollinearity in the function. The higher the observed χcal
2, the more severe is the 

multicollinearity.  

If the observed χcal
2 < χ2  , we accept the assumption of orthogonal, that is we accept 

that there is no significant multicollinearity in the function. 

3.2.2. An F-Test for the Location of Multicollinearity 

If the chi-square test is positive, the multicollinearity exists. 

The next step is to locate the factors which are multi-collinear. Farrar Glaubar computes the 

multiple correlation coefficients among the explanatory variables (Rx1
2….x2….x3……..xn1, 

Rx2
2…. x1

2…x3……..xn1) and they test the statistical significance of these multiple 

correlation coefficients with an F-test. 

  

Steps: 

i. Write the xi which is suspected to be inter-correlated with other Xs’ as a function of 

other Xs’. Thus, xi=f(x1, x2, x3 …xk). This can also be rewritten as (Given x2x3 as 

inter-correlated variable then), 

Xi=f(x2x3)=> B2X2+B3X3+U 

ii. Compute the parameter 

𝑏 = (𝑏2
𝑏3

)As b = (x1x)-1X1X, where X = (x2x3) 
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iii. Compute Ri
2 = 

𝑏2 ∑ 𝑥1𝑥2+𝑏3
∑ 𝑥1𝑥3

∑ 𝑥12
 

Where xixj = 
∑ 𝑥𝑖𝑥𝑗− ∑ 𝑥𝑖𝑥𝑗

𝑇
 

iv. Compute the F – statistic 

𝐹 =
𝑅𝑖2/(𝐾−1)

(1 − 𝑅𝑖2)/(𝑇 − 𝐾)
 

Where k = 3 and T = 12 

And check F.05 (k-1, T-k) from the F-distribution table. 

v. Define the hypothesis 

Ho: xi is not inter-correlated with x2 and x3 

Hi: xi is inter-correlated with x2 and x3 

vi. If F.05<Fcal, accept H1 and conclude that x1 is inter-correlated with x2 and x3 

vii. Repeat the test for other xii suspected to be inter-correlated with others. 

  

1.2.3.  A T-Test for the Pattern of Multicollinearity 

This is a T-test which aims at the detection of the variables which cause multicollinearity. 

 To find variables which are responsible for the multicollinearity, we compute the 

partial correlation coefficients among the explanatory variables and test their statistical 

significance with the t-statistic. 

 Recall that the partial correlation coefficient between any two variable xi and xj, 

shows the degree of correlation between these two variables, all others being kept constant. 

For the two – variable model, the partial correlation coefficients are given by the formulae. 

 𝑟2𝑥1𝑥2…𝑥3 =
(𝑟12−𝑟13𝑟23).2

(1−𝑟2
23)(1−𝑟13

2 )
 

 𝑟2𝑥1𝑥2…𝑥3 =
(𝑟13−𝑟13𝑟23).2

(1−𝑟2
23)(1−𝑟12

2 )
 

 𝑟2𝑥1𝑥2…𝑥3 =
(𝑟2−𝑟21𝑟31).2

(1−𝑟2
13)(1−𝑟12

2 )
 

 The basic hypothesis here is 

Ho: rxixj...x1..x2………xn = 0 and is tested against the alternative hypothesis 

H1: rxixj...x1...x2………xn≠ 0 

 Having estimated the partial correlation coefficients, we test their significance by 

computing for each of them the statistic. 

 𝑡 ∗=
(𝑟𝑥𝑖𝑥𝑗……………..𝑥𝑘) √⁄ 𝑇−𝐾)

√(1−𝑟2𝑥𝑖𝑥𝑗…..𝑥1…𝑥2…….𝑥𝑘)
 

 Where r2xixj...x1...x2……xk denotes the partial correlation coefficient between xi and 

xj. 

The observed value t* is compared with the theoretical t value with v = (T-K) degrees 

of freedom at the chosen level of significance). If t* > t, we accept that the partial correlation 

coefficient between the variable Xi and Xj is significant, that is, the variables Xi and Xj are 

responsible for multicollinearity in the function. If t* < t we accept that Xi and Xj are not the 

cause of multicollinearity, since their partial correlation coefficient is not statistically 
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significant. With the above three statistics, we find the severity, the location and the pattern 

of multicollinearity. 

 

4.0 ANALYSIS AND PRESENTATION OF DATA 

4.1 Presentation of Data 

 Y = Consumption, 

 X1= Wage income 

 X2= Non-wage, non-farm income, and 

 X3 = Farm income 

S/N Y X1 X2 X3 

1 62.8 43.41 17.10 3.96 

2 65.0 46.44 18.65 5.48 

3 63.9 44.35 17.09 4.37 

4 67.5 47.82 19.28 4.51 

5 71.3 51.02 23.24 4.88 

6 76.6 58.71 28.11 6.37 

7 86.3 87.69 30.29 8.96 

8 95.7 76.73 28.26 9.76 

9 98.3 75.91 27.91 9.31 

10 100.3 77.62 32.30 9.85 

11 103.2 78.01 31.39 7.21 

12 108.9 83.57 35.61 7.39 

13 108.5 90.95 37.58 7.98 

14 11.4 95.47 35.17 7.42 

Source: CIA World fact book, 2011. 

  

ANALYSIS: 

 ∑ Y = 1219.7, ∑ X1 = 957.34, ∑ 𝑋2 = 381.98, ∑ 𝑋3 = 97.45, 

 ∑ 𝑋1𝑌 = 877.152, ∑ 𝑋2 𝑌 = 31929.9640, ∑ 𝑋3 𝑌 = 8876.111 

 ∑ 𝑋1𝑋2 = 27761.387, ∑ 𝑋1𝑋3 = 7076.0291, ∑ 𝑋2𝑋3 = 2799.5687 

 ∑ 𝑌2 = 110780.37, ∑ 𝑋12 = 55701.43, ∑ 𝑋22 = 215255.3, ∑ 𝑋32 = 734.111 

T = 14 

Hypothesis Statement: 

Ho: The X’s are orthogonal 

 And it tested against the alternative hypothesis 

H1: The X’s are not orthogonal 

 𝑋12 =  
1

𝑇−1
[∑ 𝑥12 −

(∑ 𝑋)
2

𝑇
] 

  = 
1

14−1
[70099.4766 −

957.342

14
] 

  = 4,635.1998 
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 In the same manner, 

 X1X2 = 1641.0406,  X1X3 = 412.2589,  X2
2 = 653.1965, 

 X2X3 = 140.715,  X3
2 = 55.7895,  X1Y = 4310.3716, 

 X2Y = 2144.89,  X3Y = 386.1278 

 Compute the matrix (rij) using the formula: 

 𝑟𝑖𝑗 =  
𝑋𝑖𝑋𝑗

√𝑋𝑖2𝑋𝑗2
 

 𝑟12 =  
1641.0406

√4635.1998 x 653.1965
 

  = 0.9431 

 𝑟13 =  
412.2589

√14635.1998 x 55.7895
 

  = 0.8107 

 𝑟23 =  
140.7751

√653.1965 x 55.7895
 

  = 0.7371 

 It is a known fact that rij=1, if j=i. 

 Therefore, r11r22 = r33 = 1 

 𝑟𝑖𝑗 = [
1 0.9431 0.8107

0.9431 1 0.7371
0.8107 0.7371 1

] 

 |D| = |rij| = 0.0370 

 LogeD = Loge 0.0370 = -3.2968 

 χ2
cal = - [T – 1 – 1/6(2k + 5)] Loge 

 = - [23 – 1 – 1/6(2 x 3 + 5)] (-3.2968) 

 = (12.833) x 3.2968 

 = 42.3089 

 χ2
0.05V, where 

 V = ½ k (k-1) 

 V = ½ x 3(3-1) 

 V = ½ x 3(2) 

 V = 3 

 χ2
0.05 3 = 7.82 
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 Decision Rule: 

 Since reject Ho if χ
2

cal>χ2
tab, otherwise accept Ho 

 Conclusion 

 Since reject Ho if χ2
cal>χ2

tab, we therefore reject Ho and conclude that there is the 

presence of Multicollinearity in the function. 

 Test 2: An F Test for the Location of Multicollinearity 

HO: xi is not inter-correlated with x2 and x3 

Hi: xi is inter-correlated with x2 and x3. 

 Write X11 = F(x2, x3) 

 = x1 => B2x2 + B3x3 + u 

 Thus b =[
𝑏2

𝐵3
]  (X1X1)-1X1X 

Observed that 

 X1X = [
𝑋12X2𝑋12X3

𝑋13X2𝑋13X3
]  = [

653.196140.715

140.7151             55.7895
] 

 |X1X| = 16,640.7668 

 

 (𝑥1𝑥)−1 =  
1

16,640.7668
[

55.7895 −140.7151
−140.7151 653.1965

] 

 

 =  [
0.0034 −0.0085

−0.0085 0.0393
] 

 b =  [
𝑏2

𝑏3
]   =  [

0.0034 −0.0085
−0.0085 0.0393

] (
1641.0406
412.2589

) 

 

 =  [
2.0753
2.2529

] 

 b2 = 2.0753, b3 = 2.2529 

 

R12 =  
𝑏2 ∑ 𝑥1 𝑥2 +  𝑏3 ∑ 𝑥1 𝑥3

∑ 𝑥1
2  

 =  
2.0753 x 1641.0406 + 2.2529 x 412.2589

4635.1998
 

 = 0.9351 ≅ 0.94 

 To compute the F – Statistics 

 𝐹1 =  
𝑅

𝑖2/(𝑘−1)

(1−𝑅𝑖2)/(𝑇−𝐾)
 

 =  
0.9351/2

0.0649/11
 

 = 79.2458 

 F0.05 (k - 1, T - k) = F0.05(2, 11) = 3.98 

 Decision Rule: 

 If Ftab<Fcal, accept H1 otherwise reject H1. 

 Conclusion 
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 Since Ftab<Fcal,i.e 3.98 < 79.2456, we thereby accept the alternative hypothesis and 

conclude that X1 is inter-correlated with X2 and X3. 

 In the same manner, 

 F2 = Fcal = 15.3375 

 F3 = Fcal = 21.9863 

 Testing each Fcal against Ftable i.e comparing F calculation with F tabulated, we 

realized that each of the Fcal is greater than Ftab, we therefore conclude that X2 is inter-

correlated with X1 and X3 in the case. And X3 is inter-correlated with X1 and X2 in the last 

case. 

 

Test3: A T-Test for the Pattern of Mulitcollinearity 

 Hypothesis Statement 

Ho: rxixj.x1.x2………….xn = 0 

H1: rxixj.x1.x2………….xn≠ 0 

 𝑟2𝑥1𝑥2𝑥3 =  
(𝑟12− 𝑟13𝑟23)2

(1− 𝑟223)( 1 − 𝑟213)
 

 

 t2 =  
√0.2642/√14−3

√1−0.2642
 

 = 1.842 

 =  
[0.9431−(0.8107 x 0.7371)]2

(1−0.73712)(1− 0.81072)
 

 =  
0.1194

0.4567 x 0.03428
 

 = 0.7627 

 

 r2𝑥1𝑥3𝑥2 =  
(𝑟13− 𝑟12𝑟23)2

(1− 𝑟223)(1− 𝑟212)
 

  = 
[0.8107−(0.9431 x 0.7371)]2

(1−0.73712)(1− 0.94312)
 

  =  
0.0133

0.4567 x 0.03428
 

  = 0.2642 

 r2𝑥2𝑥3𝑥1 =  
(𝑟23− 𝑟21𝑟13)2

(1− 𝑟213)(1− 𝑟213)
 

  = 
[0.7371−(0.9431 x 0.0.8107)]2

(1−0.94312)(1− 0.81072)
 

  =  
0.008

0.0379
 

  = 0.0200 

 

 t =  
(𝑟𝑥𝑖𝑥𝑗𝑥1………..𝑥𝑘)/√𝑇−𝑘

√(1− 𝑟2𝑥𝑖𝑥𝑗𝑥1𝑥2……….𝑥𝑘)
 

 𝑡1 =  
√0.02 √14−3⁄

√1−0.02
 

 = 0.0426/0.9899 

 = 0.0430 

 t2 =  
√0.2642/√14−3

√1−0.2642
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 = 1.842 

 t3 =  
√0.7627/√14−3

√1−0.7627
 

 = 0.734 

Table Value 

ttab = tαV 

α = 0.05 

V = T – K = 14 – 3 = 11 

T0.05 11 = 1.796 

 

 Decision Table 

 If tcal>ttab, accept Ho otherwise reject Ho 

 Conclusion 

 Since tcal>ttab only in the third case, we thereby accept and conclude that the variable 

X2 is responsible for the multicollinearity in the function. 

 

4.2 Correcting the Effect of Multicollinearity 

As we rightly know, the effect of multicollinearity can be corrected through several ways. In 

this case, we shall adopt the method which says that this can be minimized or corrected by 

increasing the sample size. 

 We, therefore, increase the sample size by eleven (11) and test for the presence of 

multicollinearity. 

 The following results were obtained from the analysis. 

S/N Y X1 X2 X3 Y2 X1
2 X2

2 X3
2 

1 62.8 43.41 17.1 3.96 3943.84 1884.428 292.41 15.6816 

2 65 46.44 18.65 5.48 4225 2156.674 347.8225 30.0304 

3 63.9 44.35 17.09 4.37 4083.21 1966.923 292.0681 19.0969 

4 67.5 47.82 19.28 4.51 4556.25 2286.752 371.7184 20.3401 

5 71.3 51.02 23.24 4.88 5083.69 2603.04 540.0976 23.8144 

6 76.6 58.71 28.11 6.37 5867.56 3446.864 790.1721 405769 

7 86.3 87.69 30.29 8.96 7447.69 7689.536 917.4841 80.2816 

8 95.7 76.73 28.26 9.76 9158.49 5887.493 798.6276 95.2576 

9 98.3 75.91 27.91 9.31 9662.89 5762.328 778.9681 86.6761 

10 100.3 77.62 32.3 9.85 10060.09 6024.864 1043.29 97.0225 

11 103.2 78.01 31.39 7.21 10650.24 6085.56 985.3321 51.9841 

12 108.9 83.57 35.61 7.39 11859.21 6983.945 1268.072 54.6121 

13 108.5 90.59 37.58 7.98 11772.25 8206.548 1412.256 63.6804 

14 11.4 95.47 35.17 7.42 129.96 9114.521 1236.929 55.0564 

15 47.82 46.44 18.63 7.37 2286.752 2156.674 347.0769 54.3169 

16 51.02 44.35 17.01 8.67 2603.04 1966.923 289.3401 75.1689 

17 58.71 47.82 19.28 9.79 3446.864 2286.752 371.7184 95.8441 

18 87.69 51.02 23.22 9.31 7689.536 2603.04 539.1684 86.6761 

19 76.73 58.71 28.11 9.85 5887.493 3446.864 790.1721 97.0225 

20 75.91 87.69 30.29 7.21 5762.328 7689.536 917.4841 51.9841 
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21 77.62 76.73 28.64 7.39 6024.864 5887.493 820.2496 54.6121 

22 78.01 75.91 27.91 7.98 6085.56 5762.328 778.9681 63.6804 

23 83.57 77.62 32.3 7.42 6983.945 6024.864 1043.29 55.0564 

24 90.59 78.01 31.39 9.6 8206.548 6085.56 985.3321 92.16 

25 37.58 63.9 35.61 10.5 1412.256 4083.21 1268.072 110.25 

 1884.95 1665.54 674.37 192.54 154889.6 118092.7 19226.12 1570.883 

 

Source: CIA World fact book, 2011. 

 Hypothesis Statement: 

Ho: The X’s are orthogonal 

 And it tested against the alternative hypothesis 

H1: The X’s are not orthogonal 

 In the same manner, 

 χ2
cal = -[T – 1 – 1 1/6(2k + 5)] Loge 

 = 6.3089 

 χ2
0.05V, where 

 v = ½ k(k – 1) 

 v = ½ x 3(3 – 1) 

 v = x 3(2) 

 v = 3 

 χ2
0.05 3 = 7.82 

  

 Decision Rule: 

 Since reject Ho if χ
2

cal>χ2
tab, otherwise accept Ho 

 Conclusion 

 Since χ2
cal<χ2

tab, we therefore fail to reject Ho and conclude that there is absent of 

multicollinearity in the function. 

 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

It is obvious from the analysis that the presence and severity of multicollinearity, as well as 

the pattern and location of multicollinearity, in a function can be easy detected by Ferrar-

Glauber. In this analysis, we realized that variable X2 is responsible for the multicollinearity 

in the function. 

5.2 Recommendations 

From this analysis and other analysis, it is obvious that multicollinearity is always present in 

Economic data but the severity differs. The following recommendations can be made from 

this analysis and from other submissions on multicollinearity.  

1. If the multicollinearity does not seriously affect the estimates of the coefficients, one 

may tolerate its presence in the function. Although the integrity of the least estimates is to a 

certain extent impaired. 
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2. The use of Lagged variables for other explanatory variables in Distribution Lag 

Models can reduce the presence of colinearity. 

3. Introduction of Additional Equations in the Models. 
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